Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm
Abstract
1. Introduction
2. Related Work
3. Methods and Materials
3.1. Construction of Spatial Layout Model in Urban Renewal
3.2. Multi-Objective Spatial Layout Optimization Based on Improved NSGA-II
4. Results
4.1. Performance Verification Based on Improved NSGA-II Algorithm
4.2. Optimization Analysis of Urban Spatial Layout Based on Improved NSGA-II Algorithm
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Spatial–temporal evolution of “Production-Living-Ecologica” function and layout optimization Strategy in China: A case study of Liaoning Province, China. Environ. Sci. Pollut. Res. 2023, 30, 10683–10696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, J. A data-driven approach of layout evaluation for electric vehicle charging infrastructure using agent-based simulation and GIS. Simul. J. Soc. Comput. Simul. 2024, 100, 299–319. [Google Scholar] [CrossRef]
- Warmuth, J.; D’Acunto, P.; Fivet, C. Computational Conceptual Design-Typological Exploration of Spatial Truss Systems Through Optimization. J. Int. Assoc. Shell Spat. Struct. 2023, 64, 289–297. [Google Scholar] [CrossRef]
- Li, X.; Wang, L. Does Administrative Division Adjustment promote low-carbon city development? Empirical evidence from the “Revoke County to Urban District” in China. Environ. Sci. Pollut. Res. 2022, 30, 11542–11561. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Q.; De Vries, B. Land use spatial optimization using accessibility maps to integrate land use and transport in urban areas. Appl. Spat. Anal. Policy 2022, 15, 1193–1217. [Google Scholar] [CrossRef]
- Fu, J.; Huang, X.; Tong, L. Urban layout optimization in a city network under an extended quadratic assignment problem framework. Transp. A Transp. Sci. 2022, 18, 221–247. [Google Scholar] [CrossRef]
- Zhu, W.; Jiang, Z.; Cen, L.; Wu, H. Evaluation, simulation, and optimization of land use spatial patterns for high-quality development: A case study of Zhengzhou city, China. J. Geogr. Sci. 2023, 33, 266–288. [Google Scholar] [CrossRef]
- Enomoto, S.; Eom, S.; Suzuki, T. Modeling Optimal Configuration of Urban Centers and Public Transport Routes that Correspond to Population Distribution. J. City Scheming Inst. Jpn. 2022, 57, 337–344. [Google Scholar] [CrossRef]
- Luo, H.; Li, Y.; Gao, X.; Meng, X.; Yang, X.; Yan, J. Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi’an city, China. Appl. Energy 2023, 348, 121488. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, K.; Geng, J.; Lin, J.; Ai, J.; Liu, J. Spatiotemporal Evolution of Urban Heat Islands and Optimization of Spatial Network Construction in the Central Urban Area of Fuzhou City, China. Chin. Geogr. Sci. 2024, 34, 917–930. [Google Scholar] [CrossRef]
- Kwon, S.H.; Jung, D. Multiperiod Optimization Framework for Urban Drainage System scheming: A Scenario-Based Approach. J. Water Resour. Scheming Manag. 2024, 150, 04023080. [Google Scholar]
- Perdana, S.; Vielle, M. Carbon border adjustment mechanism in the transition to net-zero emissions: Collective implementation and distributional impacts. Environ. Econ. Policy Stud. 2023, 25, 299–329. [Google Scholar] [CrossRef]
- Bhopal, A.; Bre, K.; Norheim, O.F. How do we decarbonise fairly? Emissions, inequities and the implications for net zero healthcare. J. R. Soc. Med. 2022, 115, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Wang, Z.; Zhang, Z.; Mingjie, L.I.; Song, Y. Capacity-matching model of landside multiple transport modes for large airports considering the impact of carbon emissions. J. Tsinghua Univ. Sci. Technol. 2023, 63, 1729–1740. [Google Scholar]
- Dallmeyer, S.; Breuer, C. The introduction of a minimum wage in Germany and the effects on physical activity participation. Int. J. Health Econ. Manag. 2024, 24, 211–229. [Google Scholar] [CrossRef]
- Rawat, S.; Kumar, S. Mechanical performance and thermal behavior assessment of de-oiled microalgae-blended coal composites using statistical and ANN modeling. Biomass Convers. Biorefin. 2024, 14, 19793–19814. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Hassan, M.A.; Hamed, A. Modeling and techno-economic optimization of overhead panels and reflectors in near-wall mounted PV systems. Sol. Energy 2023, 246, 624–641. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Qin, H.; Chen, K.; Li, Z.; Chen, Y.; Li, J.; Hu, T.; Chen, S.; Qiao, Z.; et al. Stress-assisted design of stiffened graphene electrode structure toward compact energy storage. J. Energy Chem. 2022, 71, 478–487. [Google Scholar] [CrossRef]
- Ding, C.; Ding, Y.; Li, Y.J. Structural Optimization Design of Electromagnetic Repulsion Mechanism Based on BP Neural Network and NSGA-II. IEEJ Trans. Electr. Electron. Eng. 2023, 18, 1914–1922. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, H.; Xuan, A.T.Y.; Gao, M.; Xu, Q.; Wang, J. Enhanced target tracking algorithm for autonomous driving based on visible and infrared image fusion. J. Intell. Connect. Veh. 2023, 6, 237–249. [Google Scholar] [CrossRef]
- Fu, Y.; Fei, C.; Wei, J.; Li, Y. Collaborative Blind Denoising of Similar Patch Group Based on Fully Convolutional Siamese Network. J. Comput.-Aided Des. Comput. Graph. 2022, 34, 1293–1301. [Google Scholar]
- Torkan, R.; Ilinca, A.; Ghorbanzadeh, M. A genetic algorithm optimization approach for smart energy management of microgrids. Renew. Energy 2022, 197, 852–863. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Goswami, S.S. A comprehensive review of multiple criteria decision-making (MCDM) Methods: Advancements, applications, and future directions. Decis. Mak. Adv. 2023, 1, 25–48. [Google Scholar] [CrossRef]
Spatial Layout Optimization Scheme | F1 Weight | F2 Weight | F3 Weight |
---|---|---|---|
Carbon constraint priority (A) | 0.98 | 0.01 | 0.01 |
Priority programme for economic development (B) | 0.01 | 0.98 | 0.01 |
Compact priority solution (C) | 0.01 | 0.01 | 0.98 |
Comprehensive optimal scheme (D) | 0.33 | 0.33 | 0.33 |
Sensitivity analysis weight adjustment (E) | 0.40 | 0.35 | 0.25 |
Sensitivity analysis weight adjustment (F) | 0.33 | 0.20 | 0.47 |
Sensitivity analysis weight adjustment (G) | 0.25 | 0.25 | 0.50 |
Scheme | Net Carbon Emissions/t | Gross Local Product/108 | Compact Use of Land |
---|---|---|---|
A | 13,537.64 | 14.29421 | 2343.78 |
B | 23,571.24 | 28.27248 | 3854.91 |
C | 18,475.00 | 20.17953 | 6042.75 |
D | 19,821.80 | 23.42367 | 5791.93 |
E | 18,524.87 | 22.14167 | 5517.56 |
F | 21,173.14 | 24.47632 | 6016.78 |
G | 19,563.22 | 23.84123 | 5875.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Xia, B. Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm. Buildings 2025, 15, 94. https://doi.org/10.3390/buildings15010094
Han X, Xia B. Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm. Buildings. 2025; 15(1):94. https://doi.org/10.3390/buildings15010094
Chicago/Turabian StyleHan, Xuan, and Baishu Xia. 2025. "Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm" Buildings 15, no. 1: 94. https://doi.org/10.3390/buildings15010094
APA StyleHan, X., & Xia, B. (2025). Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm. Buildings, 15(1), 94. https://doi.org/10.3390/buildings15010094