Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm
Abstract
:1. Introduction
2. Related Work
3. Methods and Materials
3.1. Construction of Spatial Layout Model in Urban Renewal
3.2. Multi-Objective Spatial Layout Optimization Based on Improved NSGA-II
4. Results
4.1. Performance Verification Based on Improved NSGA-II Algorithm
4.2. Optimization Analysis of Urban Spatial Layout Based on Improved NSGA-II Algorithm
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Spatial–temporal evolution of “Production-Living-Ecologica” function and layout optimization Strategy in China: A case study of Liaoning Province, China. Environ. Sci. Pollut. Res. 2023, 30, 10683–10696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, J. A data-driven approach of layout evaluation for electric vehicle charging infrastructure using agent-based simulation and GIS. Simul. J. Soc. Comput. Simul. 2024, 100, 299–319. [Google Scholar] [CrossRef]
- Warmuth, J.; D’Acunto, P.; Fivet, C. Computational Conceptual Design-Typological Exploration of Spatial Truss Systems Through Optimization. J. Int. Assoc. Shell Spat. Struct. 2023, 64, 289–297. [Google Scholar] [CrossRef]
- Li, X.; Wang, L. Does Administrative Division Adjustment promote low-carbon city development? Empirical evidence from the “Revoke County to Urban District” in China. Environ. Sci. Pollut. Res. 2022, 30, 11542–11561. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Q.; De Vries, B. Land use spatial optimization using accessibility maps to integrate land use and transport in urban areas. Appl. Spat. Anal. Policy 2022, 15, 1193–1217. [Google Scholar] [CrossRef]
- Fu, J.; Huang, X.; Tong, L. Urban layout optimization in a city network under an extended quadratic assignment problem framework. Transp. A Transp. Sci. 2022, 18, 221–247. [Google Scholar] [CrossRef]
- Zhu, W.; Jiang, Z.; Cen, L.; Wu, H. Evaluation, simulation, and optimization of land use spatial patterns for high-quality development: A case study of Zhengzhou city, China. J. Geogr. Sci. 2023, 33, 266–288. [Google Scholar] [CrossRef]
- Enomoto, S.; Eom, S.; Suzuki, T. Modeling Optimal Configuration of Urban Centers and Public Transport Routes that Correspond to Population Distribution. J. City Scheming Inst. Jpn. 2022, 57, 337–344. [Google Scholar] [CrossRef]
- Luo, H.; Li, Y.; Gao, X.; Meng, X.; Yang, X.; Yan, J. Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi’an city, China. Appl. Energy 2023, 348, 121488. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, K.; Geng, J.; Lin, J.; Ai, J.; Liu, J. Spatiotemporal Evolution of Urban Heat Islands and Optimization of Spatial Network Construction in the Central Urban Area of Fuzhou City, China. Chin. Geogr. Sci. 2024, 34, 917–930. [Google Scholar] [CrossRef]
- Kwon, S.H.; Jung, D. Multiperiod Optimization Framework for Urban Drainage System scheming: A Scenario-Based Approach. J. Water Resour. Scheming Manag. 2024, 150, 04023080. [Google Scholar]
- Perdana, S.; Vielle, M. Carbon border adjustment mechanism in the transition to net-zero emissions: Collective implementation and distributional impacts. Environ. Econ. Policy Stud. 2023, 25, 299–329. [Google Scholar] [CrossRef]
- Bhopal, A.; Bre, K.; Norheim, O.F. How do we decarbonise fairly? Emissions, inequities and the implications for net zero healthcare. J. R. Soc. Med. 2022, 115, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Wang, Z.; Zhang, Z.; Mingjie, L.I.; Song, Y. Capacity-matching model of landside multiple transport modes for large airports considering the impact of carbon emissions. J. Tsinghua Univ. Sci. Technol. 2023, 63, 1729–1740. [Google Scholar]
- Dallmeyer, S.; Breuer, C. The introduction of a minimum wage in Germany and the effects on physical activity participation. Int. J. Health Econ. Manag. 2024, 24, 211–229. [Google Scholar] [CrossRef]
- Rawat, S.; Kumar, S. Mechanical performance and thermal behavior assessment of de-oiled microalgae-blended coal composites using statistical and ANN modeling. Biomass Convers. Biorefin. 2024, 14, 19793–19814. [Google Scholar] [CrossRef]
- Al-Ghussain, L.; Hassan, M.A.; Hamed, A. Modeling and techno-economic optimization of overhead panels and reflectors in near-wall mounted PV systems. Sol. Energy 2023, 246, 624–641. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Qin, H.; Chen, K.; Li, Z.; Chen, Y.; Li, J.; Hu, T.; Chen, S.; Qiao, Z.; et al. Stress-assisted design of stiffened graphene electrode structure toward compact energy storage. J. Energy Chem. 2022, 71, 478–487. [Google Scholar] [CrossRef]
- Ding, C.; Ding, Y.; Li, Y.J. Structural Optimization Design of Electromagnetic Repulsion Mechanism Based on BP Neural Network and NSGA-II. IEEJ Trans. Electr. Electron. Eng. 2023, 18, 1914–1922. [Google Scholar] [CrossRef]
- Yuan, Q.; Shi, H.; Xuan, A.T.Y.; Gao, M.; Xu, Q.; Wang, J. Enhanced target tracking algorithm for autonomous driving based on visible and infrared image fusion. J. Intell. Connect. Veh. 2023, 6, 237–249. [Google Scholar] [CrossRef]
- Fu, Y.; Fei, C.; Wei, J.; Li, Y. Collaborative Blind Denoising of Similar Patch Group Based on Fully Convolutional Siamese Network. J. Comput.-Aided Des. Comput. Graph. 2022, 34, 1293–1301. [Google Scholar]
- Torkan, R.; Ilinca, A.; Ghorbanzadeh, M. A genetic algorithm optimization approach for smart energy management of microgrids. Renew. Energy 2022, 197, 852–863. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Goswami, S.S. A comprehensive review of multiple criteria decision-making (MCDM) Methods: Advancements, applications, and future directions. Decis. Mak. Adv. 2023, 1, 25–48. [Google Scholar] [CrossRef]
Spatial Layout Optimization Scheme | F1 Weight | F2 Weight | F3 Weight |
---|---|---|---|
Carbon constraint priority (A) | 0.98 | 0.01 | 0.01 |
Priority programme for economic development (B) | 0.01 | 0.98 | 0.01 |
Compact priority solution (C) | 0.01 | 0.01 | 0.98 |
Comprehensive optimal scheme (D) | 0.33 | 0.33 | 0.33 |
Sensitivity analysis weight adjustment (E) | 0.40 | 0.35 | 0.25 |
Sensitivity analysis weight adjustment (F) | 0.33 | 0.20 | 0.47 |
Sensitivity analysis weight adjustment (G) | 0.25 | 0.25 | 0.50 |
Scheme | Net Carbon Emissions/t | Gross Local Product/108 | Compact Use of Land |
---|---|---|---|
A | 13,537.64 | 14.29421 | 2343.78 |
B | 23,571.24 | 28.27248 | 3854.91 |
C | 18,475.00 | 20.17953 | 6042.75 |
D | 19,821.80 | 23.42367 | 5791.93 |
E | 18,524.87 | 22.14167 | 5517.56 |
F | 21,173.14 | 24.47632 | 6016.78 |
G | 19,563.22 | 23.84123 | 5875.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Xia, B. Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm. Buildings 2025, 15, 94. https://doi.org/10.3390/buildings15010094
Han X, Xia B. Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm. Buildings. 2025; 15(1):94. https://doi.org/10.3390/buildings15010094
Chicago/Turabian StyleHan, Xuan, and Baishu Xia. 2025. "Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm" Buildings 15, no. 1: 94. https://doi.org/10.3390/buildings15010094
APA StyleHan, X., & Xia, B. (2025). Spatial Layout Optimization in Urban Renewal Based on Improved NSGAII Algorithm. Buildings, 15(1), 94. https://doi.org/10.3390/buildings15010094