Sustainable Building Standards in the Galapagos Islands: Definition, Simulation, and Implementation in Representative Living Labs
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.2. Establishment of the Baseline
2.3. Impact Assessment of Strategies
2.4. Definition of Sustainability Solutions
2.5. Deployment of Living Labs
3. Results
3.1. Challenges of Construction in the Galápagos Archipelago
- Improvement of the Roof
- Protection of Openings
- Improvement of the Opaque Envelope
- Optimisation of Final Energy Uses
3.2. Sustainable Building Standards
3.3. Development of the Living Labs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ricaurte, K.P.R. Diseño de un Microgrid en el Parque Nacional Galápagos San Cristóbal Pto. Baquerizo Moreno. Bachelor’s Thesis, Universidad de las Américas, Quito, Ecuador, 2019. [Google Scholar]
- Instituto de Investigación Geológico y Energético (IIGE). Balance Energético de la Provincia de Galápagos 2018. 2018. Available online: https://www.geoenergia.gob.ec/wp-content/uploads/downloads/2020/05/balance_energetico_de_galapagos_2018.pdf (accessed on 1 September 2024).
- Instituto Nacional de Estadística y Censos-INEC. Análisis de Resultados Definitivos Censo de Población y Vivienda Galápagos 2015. 2015. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Poblacion_y_Demografia/CPV_Galapagos_2015/Analisis_Galapagos%202015.pdf (accessed on 1 April 2024).
- Consejo de Gobierno del Régimen Especial de Galápagos. Plan Galápagos-Plan de Desarrollo Sustentable y Ordenamiento Territorial. 2015. Available online: https://www.gobiernogalapagos.gob.ec/wp-content/uploads/downloads/2017/04/Plan-Galapagos-2015-2020_12.pdf (accessed on 1 September 2024).
- Consejo de Gobierno del Régimen Especial de Galápagos. Informe Técnico Respecto a la Distribución y Actualización de la Tasa de Ingreso por Conservación de Áreas Naturales Protegidas. 2023. Available online: https://www.gobiernogalapagos.gob.ec/wp-content/uploads/downloads/2024/03/c.2.-informe_tecnico_st_-_aprobado_por_ctpt.pdf (accessed on 1 September 2024).
- Tecnalia. Consultoría para el Levantamiento y Desarrollo de Estándares de Comportamiento Sostenible de Edificaciones del Archipiélago de Galápagos—Resumen Ejecutivo. Available online: https://fundacionbariloche.org.ar/wp-content/uploads/2019/04/5.-Resumen-Ejecutivo-Est%C3%A1ndares-Sostenibilidad-Edificaciones-Gal%C3%A1pagos.pdf (accessed on 1 September 2024).
- Wenz, L.; Levermann, A.; Auffhammer, M. North–south polarization of European electricity consumption under future warming. Proc. Natl. Acad. Sci. USA 2017, 114, E7910–E7918. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Electricidad y Energía Renovable, Ecuador. Guía Práctica para el uso Eficiente de la Energía Eléctrica en el Ecuador. 2015. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2014/03/GUIA-PRACTICA-PARA-EL-AHORRO-Y-USO-EFICIENTE-DE-ENERGIA-22NovBAJAa.pdf (accessed on 1 April 2024).
- Instituto. Guía Práctica de la Energía. Consumo Eficiente y. 2004. Available online: https://www.idae.es/uploads/documentos/documentos_11406_Guia_Practica_Energia_3ed_A2010_509f8287.pdf (accessed on 1 March 2024).
- Ayala-Pico, J.; Arcos-Aviles, D.; Ibarra, A.; Fernandez, C.; Guinjoan, F.; Martinez, W. Current development of electricity generation systems in the Galapagos Islands–Ecuador. Renew. Energy Focus 2023, 46, 88–102. [Google Scholar] [CrossRef]
- Ministerio de Electricidad y Energía Renovable del Ecuador. Plan Nacional de Eficiencia Energética 2016–2035 (PLANEE); Ministerio de Electricidad y Energía Renovable del Ecuador: Quito, Ecuador, 2016. [Google Scholar]
- Ministerio de Electricidad y Energía Renovable del Ecuador. Cero Combustibles Fósiles para Galápagos; Ministerio de Electricidad y Energía Renovable del Ecuador: Quito, Ecuador, 2008. [Google Scholar]
- Egusquiza, A.; Torres, J.; Alzola, M.; Cortés, A.; Mejía, E. Levantamiento y desarrollo de Estándares de comportamiento sostenible de edificaciones del Archipiélago de Galápagos. In Memorias del Congreso Internacional I+ D+ i-Sostenibilidad Energética; Instituto de Investigación Geológico y Energético: Quito, Ecuador, 2019; Volume 1, pp. 21–41. Available online: https://geolatitud.geoenergia.gob.ec/ojs/ojs/index.php/congreso-idi/article/download/77/43 (accessed on 1 March 2024).
- Torres, J.; Egusquiza, A.; Garrido-Marijuan, A.; Lopez, I.; Romero-Amorrortu, A.; Villaverde, A.; Granda, M. Implementación de estándares de construcción sostenible en edificaciones del archipiélago de islas Galápagos. In REHABEND 2024; University of Cantabria—Building Technology R&D Group: Gijon, Spain, 2024. [Google Scholar]
- Union Europea-Euroclima. “Living Lab de Edificación Sostenible” Implementado en el Archipiélago de GALÁPAGOS—ECUADOR. Available online: https://www.euroclima.org/proyectos-energia/living-lab-de-edificacion-sostenible (accessed on 1 September 2024).
- Lasarte, N.; Elguezabal, P.; Sagarna, M.; Leon, I.; Otaduy, J. Challenges for Digitalisation in Building Renovation to Enhance the Efficiency of the Process: A Spanish Case Study. Sustainability 2021, 13, 122139. [Google Scholar] [CrossRef]
- The European Network of Living Labs (ENoLL). What Are Living Labs. Available online: https://enoll.org/about-us/ (accessed on 1 March 2024).
- Ahmed, D. McGough and M. Mateo-Garcia. Testing innovative technologies for retrofitting: Coventry University as a living lab. Entrep. Sustain. Issues 2017, 4, 257–270. [Google Scholar]
- Andersson, S.; Rahe, U. Accelerate innovation towards sustainable living: Exploring the potential of Living Labs in a recently completed case. J. Des. Res. 2017, 15, 234. [Google Scholar] [CrossRef]
- Korsnes, M.; Berker, T.; Woods, R.D. Domestication, acceptance and zero emission ambitions: Insights from a mixed method, experimental research design in a Norwegian Living Lab. Energy Res. Soc. Sci. 2018, 39, 226–233. [Google Scholar] [CrossRef]
- Coleman, S.; Robinson, J. Introducing the qualitative performance gap: Stories about a sustainable building. Build. Res. Inf. 2018, 46, 485–500. [Google Scholar] [CrossRef]
- de Agustín-Camacho, P.; Romero-Amorrortu, A.; Krysinski, D. A new era in the energy performance of buildings. EU Res. Mag. 2017, 2017, 42–43. [Google Scholar]
- Available online: https://energyplus.net/ (accessed on 1 September 2024).
- Available online: https://designbuilder.co.uk/ (accessed on 1 September 2024).
- Defaz, M. Metodologías activas en el proceso enseñanza—Aprendizaje. Roca Rev. Científico—Educ. Prov. Granma 2020, 16, 463–472. [Google Scholar]
- Ministerio de Electricidad y Energía Renovable (MEER). Informe Usos Finales Galápagos Realizado “Levantamiento de Información Base para la Realización del Estudio de Demanda y usos Finales de Energía en el Sector Residencial, Comercial (Hoteles) y Servicios en la Provincia de Galápagos”. Available online: http://historico.energia.gob.ec/biblioteca (accessed on 1 September 2024).
- Ministerio de Energía y Recursos Naturales no Renovables (MERNNR). Programa de recambio de equipos de mayor consumo energético por equipos etiquetados de menor consumo.
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw Hill Book Company: New York, NY, USA, 1970. [Google Scholar]
Domain | Challenge | Sub-Challenge | Indicator | Code | Unit |
---|---|---|---|---|---|
ENERGY | 1.1 Demand reduction | 1.1.1 Cooling demand | Cooling demand per m2 | 1.1.1.1 | [kWh/m2] |
1.2. Reduction of non-renewable energy consumption | 1.2.1 Energy consumption | Energy consumption per m2 | 1.2.1.1 | [kWh/m2] | |
1.2.2 Air conditioning consumption | Air conditioning consumption per m2 | 1.2.2.1 | [kWh/m2] | ||
1.2.3 Lighting consumption | Lighting consumption per m2 | 1.2.3.1 | [kWh/m2] | ||
1.2.4 DHW consumption | DHW consumption per m2 | 1.2.4.1 | [kWh/m2] | ||
1.3. Integration of renewable energies | 1.3.1 Integration of renewable energies | Renewable energy production | 1.3.1.1 | [kWh/m2·year] | |
Percentage of energy coming from solar renewable energy | 1.3.1.2 | [%] | |||
SOCIAL | 2.1 Improvement of comfort | 2.1.1 Thermal comfort levels | Percentage of dissatisfied people | 2.1.1.1 | [%] |
Percentage of time in comfort conditions | 2.1.1.2 | [%] | |||
ENVIRONMENTAL | 3.1 Reduce atmospheric emissions | 3.1.1 GHG emissions | Local warming potential, GWP (kg CO2 eq) | 3.1.1.1 | [kg CO2 eq/kg] |
3.2 Minimise resource use and control the extraction of local resources | 3.2.1 Reduction of water consumption and sustainable water use | Water consumption (m3/m2 of building and year and % by source: public network, well, river, etc.) | 3.2.1.1 | [m3/m2/year] |
Residential Buildings | Tertiary Buildings | |||||
---|---|---|---|---|---|---|
House/Villa | Apartments | Hotels | Schools | Offices | ||
Structure | N° floors | 1 | 2 | 2–3 | 1 | 2 |
Structure | Concrete | Concrete | Concrete | Concrete | Concrete | |
Envelope | Facade | Concrete block uninsulated white lime finish | Concrete block uninsulated white lime finish | Concrete block uninsulated white lime finish | Concrete block uninsulated white lime finish | Concrete block uninsulated |
Roof | Inclined Sheet metal | Flat Concrete | Flat Concrete | Inclined Sheet metal | Flat Fibre Cement | |
Carpentry | Aluminium without thermal break Practicable Single glazing 25–50% openings | Aluminium without thermal break Practicable Single glazing 25–50% openings | Aluminium without thermal break Practicable Single glazing 25–50% openings | Aluminium without thermal break Practicable Single glazing 25–50% openings | Aluminium without thermal break Practicable Single glazing 25–50% openings | |
Shading | Eaves + Mosquito netting | Eaves + Mosquito netting | Eaves + Mosquito netting | Eaves | Eaves | |
Systems | Ventilation | Natural | Natural | Natural | Natural cross ventilation | Natural |
Air conditioning | No | No | Split AA individual | Individual Split AA | Individual Split AA | |
Energy carrier | Electricity | Electricity | Electricity | Electricity | Electricity | |
Lighting | Low consumption | Low consumption | Low consumption | Low consumption | Low consumption | |
Renewable sources | No | No | No | No | No |
Residential Building | Tertiary Building | Rehabilitation | New construction | ||||||
---|---|---|---|---|---|---|---|---|---|
House/ Villa | Apartments | Hotels | Schools | Offices | |||||
BASIC intervention strategy | |||||||||
Reduce heating gains | Roof | Light-coloured finish with high solar reflectance index. | X | X | X | X | X | X | X |
Facade | Light-coloured finish with high solar reflectance index. | X | X | X | X | X | X | X | |
Windows | Reduce window area on east and west facades. | X | X | X | X | X | X | ||
Shadings | Generate shade in façade openings with local vegetation. | X | X | X | X | X | |||
Light overhangs on façade openings. | X | X | X | X | X | X | X | ||
Maximise cooling at night | Ventilation | Increase cross-ventilation through windows on opposite facades by eliminating obstacles that could reduce wind speed. | X | X | X | ||||
Large window surfaces (wood or aluminium) + single glazing + insect screens. | X | X | X | X | X | X | X | ||
Active measures | Water | Use of low water consumption appliances. | X | X | X | X | X | X | X |
Use of vegetation that needs little watering. | X | X | X | X | X | X | |||
MEDIUM intervention strategy | |||||||||
Reduce heating gains | Roof | Insulate roof + light-coloured finish with high solar reflectance index. | X | X | X | X | X | X | X |
Facade | Insulate east and west facades + light-coloured finish with high solar reflectance index. | X | X | X | X | X | X | X | |
Windows | Reduce window surface on east and west facades | X | X | X | X | X | X | ||
Application of solar control films on glass. | X | X | X | X | X | X | X | ||
Shadings | Generate shade in facade openings with local vegetation. | X | X | X | X | X | |||
Light overhangs on façade openings. | X | X | X | X | X | X | X | ||
Maximise cooling at night | Ventilation | Increase cross-ventilation through windows on opposite facades by eliminating obstacles that could reduce wind speed. | X | X | X | ||||
Large window surfaces (wood or aluminium) + single glazing + mosquito screens. | X | X | X | X | X | X | X | ||
Ventilated under-roof. | X | X | X | X | X | X | |||
Active measures | Equipment | Install ceiling fans in rooms with intense usage. | X | X | X | X | X | X | X |
Use energy-efficient refrigerators and appliances (minimum Energy Star). | X | X | X | X | X | X | |||
Use of induction cookers instead of gas stoves | X | X | X | X | X | ||||
Lighting | Use of energy-efficient lighting systems (LED) | X | X | X | X | X | X | X | |
Water | Rainwater collection (collection system + tank on the property itself). | X | X | X | X | X | X | X | |
Grey water treatment (septic tank or biodigester). | X | X | X | X | X | X | X | ||
Use of low water consumption appliances. | X | X | X | X | X | X | X | ||
Use of vegetation that needs little watering. | X | X | X | X | X | X | |||
ADVANCE intervention strategy | |||||||||
Reduce heating gains | Roof | Insulate roof + light-coloured finish with high solar reflectance index. | X | X | X | X | X | X | X |
Insulate roof + Green roof | X | X | X | X | |||||
Facade | Insulate east and west facades + light-coloured finish with high solar reflectance index. | X | X | X | X | X | X | X | |
Windows | Reduce window surface on east and west facades | X | X | X | X | X | X | ||
Replace with high-performance windows. | X | X | X | X | X | X | X | ||
Shadings | Shade openings with local vegetation. | X | X | X | X | X | |||
Light overhangs on facade openings. | X | X | X | X | X | X | X | ||
Creation of a shaded porch or veranda as a ventilated space. | X | X | X | X | X | X | X | ||
Maximise cooling at night | Ventilation | Increase cross-ventilation through windows on opposite facades by eliminating obstacles that could reduce wind speed. | X | X | X | ||||
Large window surfaces (wood or aluminium) + single glazing + mosquito screens. | X | X | X | X | X | X | X | ||
Use of operable interior partitions (sliding) for manual regulation of airflow. | X | X | X | X | X | X | X | ||
Ventilated under-deck. | X | X | X | X | X | X | |||
Equipment | Install ceiling fans in rooms with intense usage. | X | X | X | X | X | X | X | |
Active measures | Equipment | Use energy-efficient refrigerators and appliances (minimum Energy Star). | X | X | X | X | X | X | X |
Use energy-efficient air conditioning systems. | X | X | X | X | X | X | X | ||
Solar collectors for DHW. | X | X | X | X | X | X | X | ||
PV panels for electricity. | X | X | X | X | X | X | X | ||
Lighting | Reduce the use of artificial lighting during the day by installing small, properly insulated skylights (less than 5% of the roof surface in cloudy areas and less than 3% in sunny locations). | X | X | X | X | X | X | X | |
Use of energy-efficient lighting systems (LED). | X | X | X | X | X | X | X | ||
Water | Rainwater collection (rainwater collection system + on-site tank). | X | X | X | X | X | X | X | |
Grey water treatment (septic tank on each property?) | X | X | X | X | X | X | X | ||
Use of low water consumption appliances | X | X | X | X | X | X | X | ||
Use of vegetation that needs little watering. | X | X | X | X | X | X | X |
Baseline | ||||||
---|---|---|---|---|---|---|
Living Lab | ||||||
Domain | Indicator | Code | Units | Residential | School | Hotel |
ENERGY | Air conditioning demand per m2 | 1.1.1.1 | [kWh/m2] | 71.95 | 42.35 | 130.39 |
Energy consumption per m2 | 1.2.1.1 | [kWh/m2] | 108.13 | 5 | 91.88 | |
Air conditioning consumption per m2 | 1.2.2.1 | [kWh/m2] | 31.52 | 0 | 40.62 | |
Lighting consumption per m2 | 1.2.3.1 | [kWh/m2] | 5 | 5 | 2.5 | |
DHW consumption per m2 | 1.2.4.1 | [kWh/m2] | 39.38 | 0 | 45.39 | |
Renewable energy production | 1.3.1.1 | [kWh/m2] | 0 | 0 | 0 | |
Percentage of energy coming from solar energy | 1.3.1.2 | [%] | 0 | 0 | 0 | |
SOCIAL | Percentage of dissatisfied people | 2.1.1.1 | [%] | 28.64 | 45.28 | 28.82 |
Percentage of time in comfort conditions | 2.1.1.2 | [%] | 9.13 | 47.74 | 0.68 | |
ENVIRONMENTAL | Local warming potential, GWP (kg CO2 eq) | 3.1.1.1 | [kg CO2 eq./kg] | 2823.61 | 3829.69 | 10,492.72 |
Water consumption (m3/m2 of building and year and % by source: public network, well, river, etc.) | 3.2.1.1 | [m3/m2/year] | 0.28 | 0 | 0.80 |
Baseline PPD | Inter. PPD | Baseline Tª | Inter. Tª | Baseline Cool. | Inter. Cool | % Reduction | |
---|---|---|---|---|---|---|---|
January | 28.30% | 10.03% | 27.71 | 25.96 | 416.04 | 259.00 | 37.75% |
February | 37.75% | 15.05% | 28.48 | 26.74 | 501.03 | 338.69 | 32.40% |
March | 54.91% | 23.52% | 29.79 | 27.47 | 460.56 | 327.13 | 28.97% |
April | 60.98% | 39.60% | 28.88 | 26.83 | 572.38 | 402.18 | 29.73% |
May | 48.50% | 33.00% | 27.49 | 26.12 | 415.50 | 292.96 | 29.49% |
June | 26.12% | 15.75% | 25.77 | 24.57 | 191.71 | 88.36 | 53.91% |
July | 16.95% | 9.60% | 24.65 | 23.47 | 83.10 | 17.70 | 78.70% |
August | 12.25% | 7.15% | 24.07 | 22.88 | 38.70 | 0.00 | 100.00% |
September | 11.35% | 5.93% | 23.88 | 22.43 | 21.08 | 0.00 | 100.00% |
October | 11.36% | 16.23% | 24.75 | 23.24 | 86.44 | 28.29 | 67.27% |
November | 8.35% | 11.28% | 25.09 | 23.65 | 92.58 | 30.21 | 67.37% |
December | 12.05% | 7.43% | 25.99 | 24.50 | 183.95 | 97.90 | 46.78% |
Baseline PPD | Inter. PPD | Baseline Tª | Inter. Tª | Baseline Cool. | Inter. Cool. | % Reduction | |
---|---|---|---|---|---|---|---|
January | 42.06% | 25.56% | 28.56 | 27.24 | 1992.64 | 320.10 | 83.94% |
February | 54.26% | 34.66% | 29.47 | 28.05 | 1997.12 | 274.67 | 86.25% |
March | 67.96% | 47.19% | 30.56 | 28.85 | 1995.47 | 260.70 | 86.94% |
April | 75.05% | 59.55% | 29.94 | 28.23 | 2638.87 | 398.66 | 84.89% |
May | 64.81% | 51.34% | 28.64 | 27.37 | 2456.93 | 157.60 | 93.59% |
June | 41.52% | 29.97% | 26.90 | 25.79 | 1595.14 | 430.91 | 72.99% |
July | 30.43% | 20.78% | 25.83 | 24.73 | 1535.29 | 535.87 | 65.10% |
August | 24.28% | 14.95% | 25.32 | 24.04 | 0.00 | 0.00 | 0.00% |
September | 22.67% | 14.19% | 25.08 | 23.86 | 1277.29 | 527.28 | 58.72% |
October | 13.04% | 9.14% | 25.85 | 24.55 | 1456.55 | 557.02 | 61.76% |
November | 12.76% | 7.71% | 26.12 | 24.82 | 1969.05 | 985.54 | 49.95% |
December | 20.21% | 10.99% | 26.82 | 25.55 | 1471.76 | 461.25 | 68.66% |
Baseline PPD | Inter. PPD | Baseline Tª | Inter. Tª | Baseline Cool. | Inter. Cool. | % Reduction | |
---|---|---|---|---|---|---|---|
January | 28.88% | 14.95% | 28.08 | 26.72 | 309.68 | 1238.07 | 74.99% |
February | 25.60% | 20.48% | 28.13 | 27.47 | 1316.31 | 2803.82 | 53.05% |
March | 67.46% | 42.14% | 30.39 | 28.75 | 203.65 | 360.72 | 43.54% |
April | 73.92% | 55.62% | 29.72 | 28.04 | 128.86 | 322.17 | 60.00% |
May | 61.77% | 44.23% | 28.49 | 26.99 | 33.49 | 212.07 | 84.21% |
June | 35.68% | 19.80% | 26.71 | 25.06 | 7.10 | 183.29 | 96.13% |
July | 23.47% | 11.59% | 25.51 | 23.87 | 0.39 | 31.79 | 98.76% |
August | 17.61% | 7.99% | 24.91 | 23.17 | 0.00 | 2.71 | 100.00% |
September | 14.58% | 6.54% | 24.48 | 22.72 | 0.00 | 0.00 | 0.00% |
October | 9.04% | 14.05% | 25.31 | 23.55 | 1.86 | 43.16 | 95.70% |
November | 7.60% | 9.99% | 25.75 | 23.87 | 0.00 | 21.20 | 100.00% |
December | 13.41% | 7.58% | 26.64 | 24.87 | 24.41 | 216.95 | 88.75% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Barriuso, J.; Lopez-Villamor, I.; Egusquiza, A.; Garrido-Marijuan, A.; Romero-Amorrortu, A.; Egiluz, Z. Sustainable Building Standards in the Galapagos Islands: Definition, Simulation, and Implementation in Representative Living Labs. Buildings 2025, 15, 122. https://doi.org/10.3390/buildings15010122
Torres-Barriuso J, Lopez-Villamor I, Egusquiza A, Garrido-Marijuan A, Romero-Amorrortu A, Egiluz Z. Sustainable Building Standards in the Galapagos Islands: Definition, Simulation, and Implementation in Representative Living Labs. Buildings. 2025; 15(1):122. https://doi.org/10.3390/buildings15010122
Chicago/Turabian StyleTorres-Barriuso, Jorge, Iñigo Lopez-Villamor, Aitziber Egusquiza, Antonio Garrido-Marijuan, Ander Romero-Amorrortu, and Ziortza Egiluz. 2025. "Sustainable Building Standards in the Galapagos Islands: Definition, Simulation, and Implementation in Representative Living Labs" Buildings 15, no. 1: 122. https://doi.org/10.3390/buildings15010122
APA StyleTorres-Barriuso, J., Lopez-Villamor, I., Egusquiza, A., Garrido-Marijuan, A., Romero-Amorrortu, A., & Egiluz, Z. (2025). Sustainable Building Standards in the Galapagos Islands: Definition, Simulation, and Implementation in Representative Living Labs. Buildings, 15(1), 122. https://doi.org/10.3390/buildings15010122