Vortex-Induced Vibration Recognition for Long-Span Bridges Based on Transfer Component Analysis
Abstract
:1. Introduction
2. Methodology
2.1. TCA
Algorithm 1: TCA |
Input: Source domain data , source domain label , target domain data |
Output:
|
2.2. Feature Extraction
2.3. Algorithm Framework
3. Datasets
3.1. Bridge A
3.2. Bridge B
4. Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- VAnnamdas, G.M.; Bhalla, S.; Soh, C.K. Applications of structural health monitoring technology in Asia. Struct. Health Monit.-Int. J. 2017, 16, 324–346. [Google Scholar] [CrossRef]
- Comisu, C.-C.; Taranu, N.; Boaca, G.; Scutaru, M.-C. Structural health monitoring system of bridges. Procedia Eng. 2017, 199, 2054–2059. [Google Scholar] [CrossRef]
- Cantero, D.; Oiseth, O.; Ronnquist, A. Time-Frequency Analysis of Suspension Bridge Response for Identification of Vortex Induced Vibrations. In Proceedings of the International Conference on Experimental Vibration Analysis for Civil Engineering Structures (EVACES), Univ California San Diego, San Diego, CA, USA, 12–14 July 2017; pp. 667–675. [Google Scholar]
- Cantero, D.; Oiseth, O.; Ronnquist, A. Indirect monitoring of vortex-induced vibration of suspension bridge hangers. Struct. Health Monit.-Int. J. 2018, 17, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.Q.; Ma, R.J.; Wang, D.L.; Chen, A.R.; Tian, H. Prediction analysis of vortex-induced vibration of long-span suspension bridge based on monitoring data. J. Wind Eng. Ind. Aerodyn. 2019, 191, 312–324. [Google Scholar] [CrossRef]
- Zhao, L.; Cui, W.; Shen, X.M.; Xu, S.Y.; Ding, Y.J.; Ge, Y.J. A fast on-site measure-analyze-suppress response to control vortex-induced-vibration of a long-span bridge. Structures 2022, 35, 192–201. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.; Inman, D.J. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308–1317. [Google Scholar] [CrossRef]
- Bao, Y.Q.; Li, H. Machine learning paradigm for structural health monitoring. Struct. Health Monit.-Int. J. 2021, 20, 1353–1372. [Google Scholar] [CrossRef]
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit.-Int. J. 2018, 17, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Laima, S.; Li, H. Cluster analysis of winds and wind-induced vibrations on a long-span bridge based on long-term field monitoring data. Eng. Struct. 2017, 138, 245–259. [Google Scholar] [CrossRef]
- Arul, M.; Kareem, A.; Kwon, D.K. Identification of Vortex-Induced Vibration of Tall Building Pinnacle Using Cluster Analysis for Fatigue Evaluation: Application to Burj Khalifa. J. Struct. Eng. 2020, 146, 04020234. [Google Scholar] [CrossRef]
- Hua, X.; Sun, R.; Wen, Q.; Chen, Z.; Yan, Y. Automatic detection of vortex-induced resonance events in bridges using novelty detection. J. Vib. Eng. 2018, 31, 948–956. [Google Scholar]
- Huang, Z.W.; Li, Y.Z.; Hua, X.G.; Chen, Z.Q.; Wen, Q. Automatic Identification of Bridge Vortex-Induced Vibration Using Random Decrement Method. Appl. Sci. 2019, 9, 2049. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Kim, S.; Kim, H.-K. Using supervised learning techniques to automatically classify vortex-induced vibration in long-span bridges. J. Wind Eng. Ind. Aerodyn. 2022, 221, 104904. [Google Scholar] [CrossRef]
- Kim, S.; Kim, T. Machine-learning-based prediction of vortex-induced vibration in long-span bridges using limited information. Eng. Struct. 2022, 266, 114551. [Google Scholar] [CrossRef]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [PubMed]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Zhuang, F.Z.; Qi, Z.Y.; Duan, K.Y.; Xi, D.B.; Zhu, Y.C.; Zhu, H.S.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl.-Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
- Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q.A. Domain Adaptation via Transfer Component Analysis. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-09), Pasadena, CA, USA, 11–17 July 2009; pp. 1187–1192. [Google Scholar]
- Bernhard, S.; John, P.; Thomas, H. A Kernel Method for the Two-Sample-Problem. In Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference; MIT Press: Cambridge, MA, USA, 2007; pp. 513–520. [Google Scholar]
- Zhao, H.W.; Ding, Y.L.; Li, A.Q.; Liu, X.W.; Chen, B.; Lu, J. Evaluation and Early Warning of Vortex-Induced Vibration of Existed Long-Span Suspension Bridge Using Multisource Monitoring Data. J. Perform. Constr. Facil. 2021, 35, 04021007. [Google Scholar] [CrossRef]
Method | TN | FP | FN | TP | Accuracy | Recall | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|
B1-AL | noDA | 931 | 0 | 71 | 7 | 0.930 | 0.090 | 1 | 0.165 |
TCA | 931 | 0 | 22 | 56 | 0.978 | 0.718 | 1 | 0.836 |
Method | TN | FP | FN | TP | Accuracy | Recall | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|
B1-AQ | noDA | 886 | 0 | 33 | 90 | 0.967 | 0.732 | 1 | 0.845 |
TCA | 886 | 0 | 23 | 100 | 0.977 | 0.813 | 1 | 0.897 | |
B2-AQ | noDA | 886 | 0 | 30 | 93 | 0.970 | 0.756 | 1 | 0.861 |
TCA | 886 | 0 | 22 | 101 | 0.978 | 0.821 | 1 | 0.902 | |
B3-AQ | noDA | 886 | 0 | 33 | 90 | 0.967 | 0.732 | 1 | 0.845 |
TCA | 886 | 0 | 23 | 100 | 0.977 | 0.813 | 1 | 0.897 | |
B2-AL | noDA | 931 | 0 | 53 | 25 | 0.947 | 0.321 | 1 | 0.485 |
TCA | 931 | 0 | 22 | 56 | 0.978 | 0.718 | 1 | 0.836 | |
B3-AL | noDA | 931 | 0 | 77 | 1 | 0.924 | 0.013 | 1 | 0.025 |
TCA | 931 | 0 | 23 | 55 | 0.977 | 0.705 | 1 | 0.827 |
Method | TN | FN | FP | TP | Accuracy | Recall | Precision | F1 Score | |
---|---|---|---|---|---|---|---|---|---|
AQ-B1 | noDA | 2710 | 0 | 46 | 114 | 0.984 | 0.713 | 1 | 0.832 |
TCA | 2710 | 0 | 19 | 141 | 0.993 | 0.881 | 1 | 0.937 | |
AQ-B2 | noDA | 2710 | 0 | 49 | 111 | 0.983 | 0.694 | 1 | 0.819 |
TCA | 2710 | 0 | 20 | 140 | 0.993 | 0.875 | 1 | 0.933 | |
AQ-B3 | noDA | 2710 | 0 | 44 | 116 | 0.985 | 0.725 | 1 | 0.841 |
TCA | 2710 | 0 | 19 | 141 | 0.993 | 0.881 | 1 | 0.937 | |
AL-B1 | noDA | 2710 | 0 | 14 | 146 | 0.995 | 0.912 | 1 | 0.954 |
TCA | 2710 | 0 | 10 | 150 | 0.997 | 0.938 | 1 | 0.968 | |
AL-B2 | noDA | 2710 | 0 | 14 | 146 | 0.995 | 0.912 | 1 | 0.954 |
TCA | 2710 | 0 | 10 | 150 | 0.997 | 0.938 | 1 | 0.968 | |
AL-B3 | noDA | 2710 | 0 | 12 | 148 | 0.996 | 0.925 | 1 | 0.961 |
TCA | 2710 | 0 | 10 | 150 | 0.997 | 0.938 | 1 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Cao, S.; Hu, H.; Zhou, Z.; Wan, C.; Noori, M.; Li, P.; Luo, Y. Vortex-Induced Vibration Recognition for Long-Span Bridges Based on Transfer Component Analysis. Buildings 2023, 13, 2012. https://doi.org/10.3390/buildings13082012
Hou J, Cao S, Hu H, Zhou Z, Wan C, Noori M, Li P, Luo Y. Vortex-Induced Vibration Recognition for Long-Span Bridges Based on Transfer Component Analysis. Buildings. 2023; 13(8):2012. https://doi.org/10.3390/buildings13082012
Chicago/Turabian StyleHou, Jiale, Sugong Cao, Hao Hu, Zhenwei Zhou, Chunfeng Wan, Mohammad Noori, Puyu Li, and Yinan Luo. 2023. "Vortex-Induced Vibration Recognition for Long-Span Bridges Based on Transfer Component Analysis" Buildings 13, no. 8: 2012. https://doi.org/10.3390/buildings13082012
APA StyleHou, J., Cao, S., Hu, H., Zhou, Z., Wan, C., Noori, M., Li, P., & Luo, Y. (2023). Vortex-Induced Vibration Recognition for Long-Span Bridges Based on Transfer Component Analysis. Buildings, 13(8), 2012. https://doi.org/10.3390/buildings13082012