Passengers’ Perception of Acoustic Environment in the Airport Terminal: A Case Study of Tianjin Binhai International Airport
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site
2.2. On-Site Measurement
2.3. Questionnaires
2.4. Data Analysis
3. Results
3.1. Acoustic Environment Characteristics
3.1.1. Sound Pressure Level
3.1.2. 1/3 Octave Band Spectrum
3.1.3. Psychoacoustic Parameters
3.2. Subjective Evaluation of Passengers
3.2.1. Perceived Loudness and Preference
3.2.2. Perceived Effective Quality
3.2.3. Overall Evaluation of the Sound Environment
3.2.4. The Influence of Age on Perception of Sound Environment
4. Discussion
4.1. Comparison with the Physical Measurements of Previous Studies
4.2. Subjective Evaluation and Implications for Improving and Designing the Acoustic Environment of Airport Terminals
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, X.; Tan, B.; Pa, L. Exploring the prospective trends of large-scale airport terminals. World Archit. 2020, 6, 36–43+144–145. (In Chinese) [Google Scholar] [CrossRef]
- Civil Aviation Administration of China. 2021 Civil Aviation Airport Production Statistics Bulletin. [EB/OL]. Available online: https://www.mot.gov.cn/tongjishuju/minhang/202204/t20220408_3649981.html (accessed on 22 March 2022). (In Chinese)
- Architectural Design Information Set Editorial Committee. Architectural Design Information Set. In Division 7 Transportation Logistics Industry Municipal Administration, 3rd ed.; China Architecture & Building Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Chen, J.; Ma, H. An impact study of acoustic environment on users in large interior spaces. Build. Acoust. 2019, 26, 139–153. [Google Scholar] [CrossRef]
- Brink, M.; Wirth, K.E.; Schierz, C.; Thomann, G.; Bauer, G. Annoyance responses to stable and changing aircraft noise exposure. J. Acoust. Soc. Am. 2008, 124, 2930–2941. [Google Scholar] [CrossRef] [PubMed]
- Bardisi, M.E. Noise solution for Alexandria Airports. In Proceedings of the Twelfth International Congress on Sound and Vibration, Lisbon, Portugal, 11–14 July 2005. [Google Scholar]
- Sayed, A.A. A Case Study of Cairo Airport Noise for Preserving Worker’s Hearing in Egypt. Acta Acust. United Acust. 2014, 100, 118–125. [Google Scholar] [CrossRef]
- Geng, Y.; Yu, J.; Lin, B.; Wang, Z.; Huang, Y. Impact of individual IEQ factors on passengers’ overall satisfaction in Chinese airport terminals. Build. Environ. 2017, 112, 241–249. [Google Scholar] [CrossRef]
- van Wijingaarden, S.J. Atsma, ambient noise inside airport terminal. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Seoul, Republic of Korea, 23–26 August 2020. [Google Scholar]
- Wang, C.; Ma, H.; Wu, Y.; Kang, J. Characteristics and prediction of sound level in extra-large spaces. Appl. Acoust. 2018, 134, 1–7. [Google Scholar] [CrossRef]
- Du, X. Investigation of indoor environment comfort in large high-speed railway stations in Northern China. Indoor Built Environ. 2020, 29, 54–66. [Google Scholar] [CrossRef]
- Wu, Y.; Kang, J.; Zheng, W.; Wu, Y. Acoustic comfort in large railway stations. Appl. Acoust. 2020, 160, 107137. [Google Scholar] [CrossRef]
- Chen, X.; Kang, J. Acoustic comfort in large dining spaces. Appl. Acoust. 2017, 115, 166–172. [Google Scholar] [CrossRef]
- Mistar, N.A.; Sulaiman, R.; Din, N.B.C. A Conceptual Framework for Acoustic Comfort Classification in Eatery Places: Critical Reviews of the Determining Factors. Acoust. Aust. 2020, 48, 337–348. [Google Scholar] [CrossRef]
- Alnuman, N.; Altaweel, M.Z. Investigation of the Acoustical Environment in A Shopping Mall and Its Correlation to the Acoustic Comfort of the Workers. Appl. Sci. 2020, 10, 1170. [Google Scholar] [CrossRef]
- Chen, B.; Kang, J. Acoustic Comfort in Shopping Mall Atrium Spaces—A Case Study in Sheffield Meadowhall. Arch. Sci. Rev. 2004, 47, 107–114. [Google Scholar] [CrossRef]
- Rychtarikova, M.; Urban, D.; Kassakova, M.; Maywald, C.; Glorieux, C. Perception of acoustic comfort in large halls covered by transparent structural skins. In Proceedings of the Meetings on Acoustics, Boston, MA, USA, 25–29 June 2017. [Google Scholar] [CrossRef]
- De Neufville, R. (Ed.) Airport Systems: Planning, Design, and Management, 2nd ed.; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- Strada, M.; Morandi, S.; Carbonari, A.; Lisiero, S. Acoustic impact evaluation and preliminary study for the Treviso airport acoustic classification. In Proceedings of the 5th European Conference on Noise Control, Naples, Italy, 19–21 May 2003; Volume 89. [Google Scholar]
- Arafa, M.H.; Osman, T.; Abdel-Latif, I.A. Noise assessment and mitigation schemes for Hurghada airport. Appl. Acoust. 2007, 68, 1373–1385. [Google Scholar] [CrossRef]
- Hammad, R.; Abdelazeez, M.; Sharqawi, B. Measurement of the noise level at Queen Alia Airport and its effect on employed persons. Appl. Acoust. 1989, 28, 221–228. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, C.; Liang, J.; Yang, L.; Xing, R. Dynamic analysis on hearing loss among security staff in an airport of Beijing during five consecutive years. Occup. Health 2017, 33, 1559–1561. (In Chinese) [Google Scholar] [CrossRef]
- Brown, A.L.; Van Kamp, I. WHO Environmental Noise Guidelines for the European Region: A Systematic Review of Transport Noise Interventions and Their Impacts on Health. Int. J. Environ. Res. Public Health 2017, 14, 873. [Google Scholar] [CrossRef]
- Śliwińska-Kowalska, M.; Zaborowski, K. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Permanent Hearing Loss and Tinnitus. Int. J. Environ. Res. Public Health 2017, 14, 1139. [Google Scholar] [CrossRef]
- Clark, C.; Paunovic, K. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Quality of Life, Wellbeing and Mental Health. Int. J. Environ. Res. Public Health 2018, 15, 2400. [Google Scholar] [CrossRef]
- Wang, C.; Kong, X.; Yao, S.; Kang, J.; Yuan, J. Crowd noise and vocal power level in large college canteens in China. Appl. Acoust. 2021, 182, 108242. [Google Scholar] [CrossRef]
- Pick, H.L.; Siegel, G.M.; Fox, P.W.; Garber, S.R.; Kearney, J.K. Inhibiting the Lombard effect. J. Acoust. Soc. Am. 1989, 85, 894–900. [Google Scholar] [CrossRef]
- Brumm, H.; Zollinger, S.A. The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 2011, 148, 1173–1198. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y. Evaluation of sound environment in departure lounges of a large hub airport. J. Affect. Disord. 2023, 232, 110046. [Google Scholar] [CrossRef]
- ISO 1996-2: 2017; Acoustic—Description, Measurement and Assessment of Environmental Noise—Part 2: Determination of Sound Pressure Levels. ISO: Geneva, Switzerland, 2017.
- ISO/TS 12913-3-2019; Acoustics—Soundscape—Part 3: Data analysis. ISO: Geneva, Switzerland, 2018.
- ISO 532-1:2017; Acoustics-Methods for Calculating Loudness. ISO: Geneva, Switzerland, 2017.
- Stojanow, A.; Liebetrau, J. A review on conventional psychoacoustic evaluation tools, methods and algorithms. In Proceedings of the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Sottek, R.; Genuit, K. Models of signal processing in human hearing. AEU—Int. J. Electron. Commun. 2005, 59, 157–165. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.E.; Berglund, B. A principal components model of soundscape perceptiona. J. Acoust. Soc. Am. 2010, 128, 2836–2846. [Google Scholar] [CrossRef]
Spots | Loudness/SoneGF | Sharpness/Acum | Roughness/Asper | Fluctuation Strength/Vacil |
---|---|---|---|---|
R3 | 1.719 | 0.9901 | 0.0319 | 0.03226 |
R6 | 0.09037 | 0.249 | 0.3499 | 0.01125 |
Perceived Loudness | |||||||
---|---|---|---|---|---|---|---|
Aircraft Sound | Crowd Conversation Sound | Footstep Sound | Luggage Sound | Public Announcement | Mechanical Sound | ||
Preference | Aircraft sound | −0.098 | |||||
Crowd conversation sound | −0.224 ** | ||||||
Footstep sound | −0.078 | ||||||
Luggage sound | −0.063 | ||||||
Public announcement | −0.191 ** | ||||||
Mechanical sound | −0.150 * |
Dimensions | Pleasant | Chaotic | Vibrant | Uneventful | Calm | Annoying | Eventful | Monotonous |
---|---|---|---|---|---|---|---|---|
Mean ± SD | 3.10 ± 0.820 | 3.05 ± 0.875 | 3.15 ± 0.790 | 3.33 ± 0.788 | 2.90 ± 0.907 | 2.79 ± 0.799 | 3.12 ± 0.816 | 2.85 ± 0.751 |
Age Group | Pleasant | Chaotic | Vibrant | Uneventful | Calm | Annoying | Eventful | Monotonous | P | E |
---|---|---|---|---|---|---|---|---|---|---|
<18 | 3 ± 0 | 3 ± 0 | 3.33 ± 0.47 | 3.67 ± 0.47 | 3.33 ± 0.47 | 3.33 ± 0.47 | 3.33 ± 0.47 | 3.67 ± 0.47 | −0.33 | −0.33 |
18–25 | 2.97 ± 0.83 | 3.11 ± 0.87 | 3.04 ± 0.80 | 3.34 ± 0.74 | 2.83 ± 0.96 | 2.80 ± 0.78 | 3.16 ± 0.76 | 2.74 ± 0.71 | 0.18 | −0.18 |
26–30 | 3.11 ± 0.82 | 3.06 ± 0.94 | 3.15 ± 0.81 | 3.23 ± 0.84 | 2.79 ± 0.83 | 2.79 ± 0.81 | 3.13 ± 0.87 | 2.83 ± 0.84 | 0.35 | −0.09 |
31–40 | 3.24 ± 0.84 | 3.07 ± 0.90 | 3.11 ± 0.73 | 3.33 ± 0.89 | 2.87 ± 0.85 | 2.67 ± 0.86 | 3.07 ± 0.89 | 2.93 ± 0.76 | 0.54 | −0.26 |
41–50 | 3.32 ± 0.73 | 3.00 ± 0.46 | 3.63 ± 0.67 | 3.36 ± 0.67 | 3.36 ± 0.81 | 3.00 ± 0.46 | 3.16 ± 0.59 | 3.05 ± 0.51 | 0.81 | −0.21 |
>50 | 3.33 ± 0.47 | 2.00 ± 0.58 | 3.33 ± 0.75 | 3.67 ± 0.47 | 3.67 ± 0.47 | 2.67 ± 1.11 | 2.83 ± 1.07 | 3.00 ± 0.57 | 1.71 | −0.83 |
Pleasantness | Eventfulness | Calmness | Virality | |||||
---|---|---|---|---|---|---|---|---|
Pleasant | Annoying | Eventful | Uneventful | Calm | Chaotic | Vibrant | Monotonous | |
Aircraft sound | 0.067 | 0.031 | −0.062 | 0.008 | 0.142 * | −0.112 | −0.099 | 0.106 |
Crowd conversation sound | −0.258 ** | 0.089 | 0.107 | −0.190 ** | −0.295 ** | 0.305 ** | −0.103 | −0.022 |
Footstep sound | −0.054 | 0.095 | −0.031 | 0.007 | −0.005 | 0.107 | 0.016 | 0.074 |
Luggage sound | −0.061 | 0.149 * | −0.042 | −0.006 | 0.027 | 0.071 | −0.070 | 0.182 ** |
Public announcement | −0.098 | 0.100 | 0.132 | −0.169 * | −0.290 ** | 0.238 ** | −0.162 * | −0.124 |
Mechanical sound | −0.083 | −0.014 | −0.048 | −0.139 * | −0.007 | 0.029 | −0.027 | −0.101 |
a | b | |||||
---|---|---|---|---|---|---|
Quality Evaluation | Loudness | Coordination | Quality Evaluation | Loudness | Coordination | |
Aircraft sound | 0.000 | −0.074 | −0.013 | 0.030 **/0.054 | 0.248/0.060 | 0.044 */0.159 |
Crowd conversation sound | −0.426 ** | 0.223 ** | −0.138 * | 0.530/1.260 | 3.130/−1.125 | 0.851/1.045 |
Footstep sound | −0.058 | 0.077 | −0.106 | 0.002 **/0.040 | 0.018 **/−0.314 | 0.006 **/0.273 |
Luggage sound | −0.178 ** | 0.096 | −0.166 ** | 0.995/0.661 | 0.002 **/−0.610 | 0.517/0.831 |
Public announcement | −0.208 ** | 0.168 ** | 0.053 | / | / | / |
Mechanical sound | −0.085 | 0.000 | −0.021 | 0.073/0.101 | 0.922/0.017 | 0.271/0.063 |
Factor | The Perceived Loudness of the Individual Sound Source | Preference | Perceived Effective Quality | Quality Evaluation | Overall Loudness | Coordination |
---|---|---|---|---|---|---|
Age | Aircraft sound (0.006 **) | — | Vibrant (0.044 *) | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Gao, Z.; Chang, F.; Zhao, W.; Wang, J.; Ma, H.; Wang, C. Passengers’ Perception of Acoustic Environment in the Airport Terminal: A Case Study of Tianjin Binhai International Airport. Buildings 2023, 13, 2585. https://doi.org/10.3390/buildings13102585
Liu M, Gao Z, Chang F, Zhao W, Wang J, Ma H, Wang C. Passengers’ Perception of Acoustic Environment in the Airport Terminal: A Case Study of Tianjin Binhai International Airport. Buildings. 2023; 13(10):2585. https://doi.org/10.3390/buildings13102585
Chicago/Turabian StyleLiu, Mengjin, Zhibin Gao, Fei Chang, Wei Zhao, Junquan Wang, Hui Ma, and Chao Wang. 2023. "Passengers’ Perception of Acoustic Environment in the Airport Terminal: A Case Study of Tianjin Binhai International Airport" Buildings 13, no. 10: 2585. https://doi.org/10.3390/buildings13102585
APA StyleLiu, M., Gao, Z., Chang, F., Zhao, W., Wang, J., Ma, H., & Wang, C. (2023). Passengers’ Perception of Acoustic Environment in the Airport Terminal: A Case Study of Tianjin Binhai International Airport. Buildings, 13(10), 2585. https://doi.org/10.3390/buildings13102585