The Effects of Laser Remelting on the Microstructure and Performance of Bainitic Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. LSR with Different Laser Scanning Speeds
3.2. LSR with Different Scanning Space
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, K.; Chen, H.; Masse, J.; Bouaziz, O.; Gachet, G. The effect of prior ferrite formation on bainite and martensite transformation kinetics in advanced high-strength steels. Acta Mater. 2013, 61, 6025–6036. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, H.; Gui, X.; Luo, P.; Tan, Z.; Bai, B. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: The great potential of ultrafine filmy retained austenite. Acta Mater. 2014, 76, 425–433. [Google Scholar] [CrossRef]
- Gui, X.; Gao, G.; Guo, H.; Zhao, F.; Tan, Z.; Bai, B. Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel. Mater. Sci. Eng. A 2017, 684, 598–605. [Google Scholar]
- Long, X.Y.; Kang, J.; Lv, B.; Zhang, F.C. Carbide-free bainite in medium carbon steel. Mater. Des. 2014, 64, 237–245. [Google Scholar] [CrossRef]
- Leiro, A.; Vuorinen, E.; Sundin, K.G.; Prakash, B.; Sourmail, T.; Smanio, V.; Caballero, F.G.; Garcia-Mateo, C.; Elvira, R. Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions. Wear 2013, 298–299, 42–47. [Google Scholar] [CrossRef]
- Gola, A.M.; Ghadamgahi, M.; Ooi, S.W. Microstructure evolution of carbide-free bainitic steels under abrasive wear conditions. Wear 2017, 376–377, 975–982. [Google Scholar] [CrossRef]
- Xing, X.L.; Yuan, X.M.; Zhou, Y.F.; Qi, X.W.; Lu, X.; Xing, T.H.; Ren, X.J.; Yang, Q.X. Effect of bainite layer by LSMCIT on wear resistance of medium-carbon bainite steel at different temperatures. Surf. Coat. Technol. 2017, 325, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Das Bakshi, S.; Leiro, A.; Prakash, B.; Bhadeshia, H.K.D.H. Dry rolling/sliding wear of nanostructured bainite. Wear 2014, 316, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Adkins, N.J.E.; Attallah, M.M. Selective laser melting of Invar 36: Microstructure and properties. Acta Mater. 2016, 103, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Zhang, H.; Wang, G.; Wang, H. Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel. J. Mater. Process. Tech. 2017, 250, 220–227. [Google Scholar] [CrossRef]
- Major, B. Chapter 7–Laser Processing for Surface Modification by Remelting and Alloying of Metallic Systems. In Materials Surface Processing by Directed Energy Techniques; Pauleau, Y., Ed.; Elsevier: Oxford, UK, 2006; pp. 241–274. [Google Scholar]
- Tang, Y.; Yang, H.; Huang, D.; Zhao, L.; Liu, D.; Shen, M.; Hu, Y.; Zhao, M.; Zhang, J.; Li, J.; et al. Dual-gradient bainite steel matrix composite fabricated by direct laser deposition. Mater. Lett. 2019, 238, 210–213. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, K.; Lu, F.; Zhang, K.; Li, Z.; Hosseini, S.R.E.; Wang, M. Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coatings. Appl. Surf. Sci. 2015, 357, 309–316. [Google Scholar] [CrossRef]
- Guo, Y.; Yao, C.; Feng, K.; Li, Z.; Chu, P.; Wu, Y. Effect of Isothermal Temperature on Growth Behavior of Nanostructured Bainite in Laser Cladded Coatings. Materials 2017, 10, 800. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.L.; Zhou, Y.F.; Yang, Y.L.; Gao, S.Y.; Ren, X.J.; Yang, Q.X. Surface modification of low-carbon nano-crystallite bainite via laser remelting and following isothermal transformation. Appl. Surf. Sci. 2015, 353, 184–188. [Google Scholar] [CrossRef]
- Xing, X.L.; Zhou, Y.F.; Gao, S.Y.; Wang, J.B.; Yang, Y.L.; Yang, Q.X. Nano-twin in surface modified bainite induced by laser surface modification. Mater. Lett. 2016, 165, 79–82. [Google Scholar] [CrossRef]
- Xing, X.; Zhou, Y.; Lu, X.; Qi, X.; Zhang, L.; Yang, Q. Formation abilities of nano-twin and ε-martensite in laser surface modification of a mid-carbon steel. Appl. Surf. Sci. 2019, 479, 634–638. [Google Scholar] [CrossRef]
- Xia, M.; Gu, D.; Yu, G.; Dai, D.; Chen, H.; Shi, Q. Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int. J. Mach. Tools Manuf. 2016, 109, 147–157. [Google Scholar] [CrossRef]
- Wang, G.; Liang, J.; Yang, Y.; Shi, Y.; Zhou, Y.; Jin, T.; Sun, X. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis. J. Mater. Sci. Technol. 2018, 34, 1315–1324. [Google Scholar] [CrossRef]
- Li, R.; Jin, Y.; Li, Z.; Zhu, Y.; Wu, M. Effect of the remelting scanning speed on the amorphous forming ability of Ni-based alloy using laser cladding plus a laser remelting process. Surf. Coat. Technol. 2014, 259, 725–731. [Google Scholar] [CrossRef]
- Jiao, X.; Wang, J.; Wang, C.; Gong, Z.; Pang, X.; Xiong, S.M. Effect of laser scanning speed on microstructure and wear properties of T15M cladding coating fabricated by laser cladding technology. Opt. Laser Eng. 2018, 110, 163–171. [Google Scholar] [CrossRef]
- Netprasert, O.; Tangwarodomnukun, V.; Dumkum, C. Surface Hardening of AISI 420 Stainless Steel by Using a Nanosecond Pulse Laser. Mater. Sci. Forum 2018, 911, 44–48. [Google Scholar] [CrossRef]
- Chong, X.; Jiang, Y.; Hu, M.; Feng, J. Elaborating the phases and mechanical properties of multiphase alloy: Experimental two-dimensional mapping combined with theoretical calculations. Mater. Charact. 2017, 134, 347–353. [Google Scholar] [CrossRef]
- Dilthey, U.; Goumeniouk, A.; Lopota, V.; Turichin, G.; Valdaitseva, E. Development of a theory for alloying element losses during laser beam welding. J. Phys. D Appl. Phys. 2000, 34, 81–86. [Google Scholar] [CrossRef]
- Li, T.; Yang, L.J.; Qiu, W.C.; Yang, R.X. Vaporization and composition change of 304 stainless steel during keyhole mode laser welding. Trans. Chin. Weld. Inst. 2018, 39, 5–9. [Google Scholar]
- Park, J.; Woo, I.; Lee, J. Effect of Laser Welding Variables on the Formability of Si Added Steel Welds. J. Korean Weld. Joining Soc. 2006, 24, 15–21. [Google Scholar] [CrossRef]
- Meng, W.; Li, Z.G.; Huang, J.; Wu, Y.X.; Katayama, S.J. Microstructure and Softening of Laser-Welded 960 MPa Grade High Strength Steel Joints. J. Mater. Eng. Perform. 2014, 23, 538–544. [Google Scholar] [CrossRef]
- Farshidianfar, M.H.; Khajepouhor, A.; Gerlich, A. Real-time monitoring and prediction of martensite formation and hardening depth during laser heat treatment. Surf. Coat. Technol. 2017, 315, 326–334. [Google Scholar] [CrossRef]
- Lapouge, P.; Dirrenberger, J.; Coste, F.; Schneider, M. Laser heat treatment of martensitic steel and dual-phase steel with high martensite content. Mater. Sci. Eng. A 2019, 752, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Kitahara, H.; Ueji, R.; Tsuji, N.; Minamino, Y. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006, 54, 1279–1288. [Google Scholar] [CrossRef]
Element | C | Mn | Si | Cr | Ni | Mo | Fe |
---|---|---|---|---|---|---|---|
wt% | 0.2 | 2.0 | 0.5–1.5 | 0.5–1.0 | 0.4–0.8 | 0.3–0.6 | Bal. |
Sample Number | Laser Power (W) | Scanning Speed (mm/s) | Scanning Space (μm) | Shielding Gas |
---|---|---|---|---|
P-1# | 90 | 110 | 80 | Ar |
P-2# | 90 | 80 | 80 | Ar |
P-3# | 90 | 50 | 80/90/100/110/120/130/140/150 | Ar |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhang, M.; Guan, Y.; Wu, P.; Chong, X.; Li, Y.; Tan, Z. The Effects of Laser Remelting on the Microstructure and Performance of Bainitic Steel. Metals 2019, 9, 912. https://doi.org/10.3390/met9080912
Yu Y, Zhang M, Guan Y, Wu P, Chong X, Li Y, Tan Z. The Effects of Laser Remelting on the Microstructure and Performance of Bainitic Steel. Metals. 2019; 9(8):912. https://doi.org/10.3390/met9080912
Chicago/Turabian StyleYu, Yuelong, Min Zhang, Yingchun Guan, Peng Wu, Xiaoyu Chong, Yuhang Li, and Zhunli Tan. 2019. "The Effects of Laser Remelting on the Microstructure and Performance of Bainitic Steel" Metals 9, no. 8: 912. https://doi.org/10.3390/met9080912
APA StyleYu, Y., Zhang, M., Guan, Y., Wu, P., Chong, X., Li, Y., & Tan, Z. (2019). The Effects of Laser Remelting on the Microstructure and Performance of Bainitic Steel. Metals, 9(8), 912. https://doi.org/10.3390/met9080912