Electrochemical, Structural and Morphological Characterization of Hydrothermally Fabricated Binary Palladium Alloys PdCo and PdNi
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. XRD Analysis
3.2. FTIR Analysis
3.3. SEM Analysis
3.4. Electrochemical Analysis
- R—gas constant in J∙mol−1∙K−1;
- T—Temperature in Kelvins;
- n—number of electrons participating in the reduction reaction;
- F—Faradays constant;
- Rct—Charge transfer resistance.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Islam, M.T.; Shahir, S.A.; Uddin, T.M.I.; Saifullah, A.Z.A. Current energy scenario and future prospect of renewable energy in Bangladesh. Renew. Sustain. Energy Rev. 2014, 39, 1074–1088. [Google Scholar] [CrossRef]
- Yang, P.; Tang, Q. Robust counter electrodes from nanoporous NiM(M = Pt, Pd) alloys for dye-sensitized solar cells. Electrochim. Acta 2015, 182, 827–833. [Google Scholar] [CrossRef]
- Raj, C.C.; Prasanth, R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 2016, 317, 120–132. [Google Scholar] [CrossRef]
- Liu, K.; Wei, A.; Liu, J.; Liu, Z.; Xiao, Z.; Zhao, Y. NiCo2S4 nanosheet thin film counter electrodes prepared by a two-step approach for dye-sensitized solar cells. Mater. Lett. 2018, 217, 185–188. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, J.; Duan, Y.; Yuan, H.; Tang, Q. 9.07%-Efficiency dye-sensitized solar cell from Pt-free RuCoSe ternary alloy counter electrode. Mater. Lett. 2018, 218, 76–79. [Google Scholar] [CrossRef]
- Kutraleeswaran, M.; Venkatachalam, M.; Saroja, M.; Gowthaman, P.; Shankar, S. Dye sensitized solar cells-A Review. J. Adv. Res. Appl. Sci. 2017, 4, 26–38. [Google Scholar]
- Thomas, S.; Deepak, T.G.; Anjusree, G.S.; Arun, T.A.; Nair, S.V.; Nair, A.S. A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 4474–4490. [Google Scholar] [CrossRef]
- Shi, Z.; Deng, K.; Li, L. Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells. Sci. Rep. 2015, 5, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, S.; Nateghi, M.R.; Zarandi, M.B. An overview of the Challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 2017, 71, 675–686. [Google Scholar] [CrossRef]
- Zheng, W.; Qi, T.; Zhang, Y.C.; Shi, H.Y.; Tian, J.Q. Fabrication and characterization of a multi-walled carbon nanotube-based counter electrode for dye-sensitized solar cells. New Carbon Mater. 2015, 30, 391–396. [Google Scholar] [CrossRef]
- Chen, M.; Shao, L.L. Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells. Chem. Eng. J. 2016, 304, 629–645. [Google Scholar] [CrossRef]
- Gao, C.; Han, Q.; Wu, M. Review on transition metal compounds based counter electrode for dye-sensitized solar cells. J. Energy Chem. 2018, 27, 703–712. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Yang, X.; Gao, Y.; Ge, S. Alloyed PtNi counter electrodes for high-performance dye-sensitized solar cell applications. J. Alloys Compd. 2017, 725, 1272–1281. [Google Scholar] [CrossRef]
- He, B.; Tang, Q.; Zhang, H.; Yu, L. Counter electrode electrocatalysts from binary Pd–Co alloy nanoparticles for dye-sensitized solar cells. Sol. Energy 2016, 124, 68–75. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Balamurugan, J.; Thanh, T.D.; Kim, N.H.; Hui, D.; Lee, J.H. Surfactant-free synthesis of NiPd nanoalloy/graphene bifunctional nanocomposite for fuel cell. Compos. Part B Eng. 2017, 114, 319–327. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, Q.; Chen, H.; Shaw, M. Recent advances in palladium based electrocatalysts for fuel cell rections and hydrogen evolution reaction. Nano Energy 2016, 29, 198–219. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Li, X.; Zhang, L. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 2009, 34, 4889–4899. [Google Scholar] [CrossRef]
- Kendall, K.; Kosseva, M. Nanoparticle aggregation influenced by magnetic fields. Colloids Surf. A 2006, 286, 112–116. [Google Scholar] [CrossRef]








| Sample | 2θ (111) | (111) d-Spacing Å | Lattice Parameters Å | Crystallite Size Å |
|---|---|---|---|---|
| PdNi | 40.1 | 2.2518 | 3.90019 | 5.39 |
| PdCo | 39.7 | 2.2735 | 3.93788 | 5.21 |
| Electrode | IR/mA∙cm−2 | Epp/V | Rct/Ω∙cm−2 |
|---|---|---|---|
| PdNi | 41 | 0.1 | 0.345 |
| PdCo | 18 | 0.14 | 0.372 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, E.; Taziwa, R.; Mutukwa, D.; Zingwe, N. Electrochemical, Structural and Morphological Characterization of Hydrothermally Fabricated Binary Palladium Alloys PdCo and PdNi. Metals 2019, 9, 796. https://doi.org/10.3390/met9070796
Meyer E, Taziwa R, Mutukwa D, Zingwe N. Electrochemical, Structural and Morphological Characterization of Hydrothermally Fabricated Binary Palladium Alloys PdCo and PdNi. Metals. 2019; 9(7):796. https://doi.org/10.3390/met9070796
Chicago/Turabian StyleMeyer, Edson, Raymond Taziwa, Dorcas Mutukwa, and Nyengerai Zingwe. 2019. "Electrochemical, Structural and Morphological Characterization of Hydrothermally Fabricated Binary Palladium Alloys PdCo and PdNi" Metals 9, no. 7: 796. https://doi.org/10.3390/met9070796
APA StyleMeyer, E., Taziwa, R., Mutukwa, D., & Zingwe, N. (2019). Electrochemical, Structural and Morphological Characterization of Hydrothermally Fabricated Binary Palladium Alloys PdCo and PdNi. Metals, 9(7), 796. https://doi.org/10.3390/met9070796

