Grain Refinement by Extension Twin in Mg Alloy during Asymmetrical Rolling
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. AR Deformation
3.2. Deformation Twin
3.3. Deformed Microstructure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ko, Y.G.; Hamad, K. Structural Features and mechanical properties of AZ31 Mg Alloy warm-deformed by differential speed rolling. J. Alloy. Compd. 2018, 744, 96–103. [Google Scholar] [CrossRef]
- Hamad, K.; Ko, Y.G. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys. Sci. Rep. 2016, 6, 29954. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.G.; Hamad, K. Microstructure stability and mechanical properties of ultrafine grained 5052 Al alloy fabricated by differential speed rolling. Mater. Sci. Eng. A 2018, 733, 24–27. [Google Scholar] [CrossRef]
- Yang, H.W.; Widiantara, I.P.; Ko, Y.G. Effect of deformation path on texture and tension properties of submicrocrystalline Al-Mg-Si alloy fabricated by differential speed rolling. Mater. Lett. 2018, 213, 54–57. [Google Scholar] [CrossRef]
- Tian, L.; Li, L. A review on the strengthening of nanostructured materials. Int. J. Curr. Eng. Technol. 2018, 88, 236–249. [Google Scholar] [CrossRef]
- Ko, Y.G.; Shin, D.H.; Park, K.T.; Lee, C.S. An analysis of the strain hardening behavior of ultra-fine grain pure titanium. Scr. Mater. 2006, 54, 1785–1789. [Google Scholar] [CrossRef]
- Ko, Y.G.; Hamad, K. On the microstructure homogeneity of AA6061 alloy after cross-shear deformations. Adv. Eng. Mater. 2017, 19, 1700152. [Google Scholar] [CrossRef]
- Ko, Y.G.; Widiantara, I.P.; Hamad, K. On the considerability of DSR (differential speed rolling) as a severe plastic deformation method. Adv. Eng. Mater. 2017, 19, 1–5. [Google Scholar] [CrossRef]
- Ko, Y.G.; Hamad, K. Annealing behavior of 6061 Al alloy subjected to differential speed rolling deformation. Metals 2017, 7, 494. [Google Scholar] [CrossRef]
- Hilšer, O.; Rusz, S.; Szkandera, P.; Čížek, L.; Kraus, M.; Džugan, J.; Maziarz, W. Study of the microstructure, tensile properties and hardness of AZ61 magnesium alloy subjected to severe plastic deformation. Metals 2018, 8, 776. [Google Scholar] [CrossRef]
- Gong, X.; Kang, S.B.; Li, S.; Cho, J.H. Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling. Mater. Des. 2009, 30, 3345–3350. [Google Scholar] [CrossRef]
- Kim, H.K.; Cho, J.H.; Kim, H.W.; Lee, J.C. 6xxx series al alloy sheets with high formability produced by twin-roll strip casting and asymmetric rolling. J. Korean Inst. Met. Mater. 2012, 50, 503–509. [Google Scholar]
- Wu, H.C.; Kumar, A.; Wang, J.; Bi, X.F.; Tomé, C.N.; Zhang, Z.; Mao, S.X. Rolling-induced face centered cubic titanium in hexagonal close packed titanium at room temperature. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Ohori, K. Grain refinement of high purity aluminium by asymmetric rolling. Mater. Sci. Technol. 2000, 16, 1095–1101. [Google Scholar] [CrossRef]
- Park, J.H.; Hamad, K.; Widiantara, I.P.; Ko, Y.G. Strain and crystallographic texture evaluation of interstitial free steel cold deformed by differential speed rolling. Mater. Lett. 2015, 147, 38–41. [Google Scholar] [CrossRef]
- Hamad, K.; Park, J.H.; Ko, Y.G. Finite Element Analysis of Deformation Behavior in Al-2.2 wt.%Mg Alloy Subjected to Differential Speed Rolling. J. Mater. Eng. Perform. 2015, 24, 2990–3001. [Google Scholar] [CrossRef]
- Barnett, M.R.; Nave, M.D.; Ghaderi, A. Yield point elongation due to twinning in a magnesium alloy. Acta Mater. 2012, 60, 1433–1443. [Google Scholar] [CrossRef]
- Barnett, M.R.; Keshavarz, Z.; Nave, M.D. Microstructural features of rolled Mg-3Al-Zn. Met. Mater. Trans. A 2005, 36, 1697–1704. [Google Scholar] [CrossRef]
- Nave, M.D.; Barnett, M.R. Microstructures and textures of pure magnesium deformed in plane-strain compression. Scr. Mater. 2004, 51, 881–885. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Y.; Sun, S.; Bian, H.; Huang, H.; Wang, Z.; Koizumi, Y.; Chiba, A. Enhanced damping capacity of magnesium alloys by tensile twin boundaries. Scr. Mater. 2015, 101, 8–11. [Google Scholar] [CrossRef]
- Ma, E.; Wang, Y.M.; Lu, Q.H.; Sui, M.L.; Lu, L.; Lu, K. Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 2004, 85, 4932–4934. [Google Scholar] [CrossRef]
- Fan, H.; Aubry, S.; Arsenlis, A.; El-Awady, J.A. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater. 2015, 92, 126–139. [Google Scholar] [CrossRef]
- Jonas, J.J.; Mu, S.; Al-Samman, T.; Gottstein, G.; Jiang, L.; Martin, E. The role of strain accommodation during the variant selection of primary twins in magnesium. Acta Mater. 2011, 59, 2046–2056. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widiantara, I.P.; Yang, H.W.; Kamil, M.P.; Yoon, D.K.; Ko, Y.G. Grain Refinement by Extension Twin in Mg Alloy during Asymmetrical Rolling. Metals 2018, 8, 891. https://doi.org/10.3390/met8110891
Widiantara IP, Yang HW, Kamil MP, Yoon DK, Ko YG. Grain Refinement by Extension Twin in Mg Alloy during Asymmetrical Rolling. Metals. 2018; 8(11):891. https://doi.org/10.3390/met8110891
Chicago/Turabian StyleWidiantara, I Putu, Hae Woong Yang, Muhammad Prisla Kamil, Dong Keun Yoon, and Young Gun Ko. 2018. "Grain Refinement by Extension Twin in Mg Alloy during Asymmetrical Rolling" Metals 8, no. 11: 891. https://doi.org/10.3390/met8110891
APA StyleWidiantara, I. P., Yang, H. W., Kamil, M. P., Yoon, D. K., & Ko, Y. G. (2018). Grain Refinement by Extension Twin in Mg Alloy during Asymmetrical Rolling. Metals, 8(11), 891. https://doi.org/10.3390/met8110891