Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review
Abstract
:1. Introduction
2. Binary Systems
2.1. Yttrium
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-0.7Y | 39 | 150 | 14 | As cast + heat treated at 525 °C for 2–12 h [7] |
Mg-1.23Y | 45 | 155 | 13 | |
Mg-3.1Y | 70 | 160 | 11 | |
Mg-4.67Y | 89 | 175 | 10 | |
Mg-6.5Y | 110 | 230 | 8 |
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-1Y | 25 | 75 | 10 | As-Cast [15] |
Mg-1Y | 148 | 200 | 9.3 | Cast + Hot Rolled at 400 °C [15] |
Mg-3Y | 120 | 200 | 33 | Cast + Extruded at 350 °C [16] |
Mg-2Y | 92 | 189 | 21 | Cast + Heat treated at 480 °C for 12 h + Extruded at 420 °C [19] |
Mg-4Y | 87 | 177 | 30 | Cast + Heat treated at 480 °C for 12 h + Extruded at 420 °C [19] |
Mg-2Y | 146 | 228 | 30.5 | Cast + Hot Rolled at 450 °C + Annealed [17] |
Mg-3Y | 92 | 165 | 24 | Gravity cast + Hot rolled + Annealed at 500 °C for 15 min [18] |
Mg-5Y | - | 350 | 7 | Powder Metallurgy + Cold pressed (540 MPa) + Extruded at 420 °C [20] |
Mg-10Y | - | 440 | 9 | Powder Metallurgy + Cold pressed (540 MPa) + Extruded at 420 °C [20] |
2.2. Cerium
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-0.2Ce | 68.6 | 170 | 31 | Cast + Extruded at 400 °C [22] |
Mg-0.2Ce | 110–135 | 200–220 | 14–16 | Cast + Extruded at 300 °C + Rolled at 400 °C [23] |
Mg-0.2Ce | 100 | 215 | 20.6 | Cast+ Homogenized at 400 °C + Extrusion at 350 °C [24] |
Mg-0.5Ce | 130 | 230 | 8 | |
Mg-0.4Ce | 140 | 160 | 20 | As cast [21] |
Mg-0.4Ce | 90 | 120 | 29 | Cast + Annealed at 520 °C for 1 h + water quenched [21] |
Mg-0.53Ce | 80 | 140 | 5.5 | High Pressure Die Cast [6] |
Mg-0.93Ce | 90 | - | 5 | |
Mg-1.48Ce | 100 | - | 4 | |
Mg-2.87Ce | 135 | 160 | 1.5 | |
Mg-4.78Ce | 150 | - | 0.9–1 | |
Mg-1Ce | 146 ± 5.5 | 168.5 ± 3 | 7.1 | Cast + hot rolled at 400 °C [25] |
Mg-1Ce | 134 ± 2.5 | 205.5 ± 7 | 2.7 | Cast + hot rolled at 400 °C and annealed for 1 h at 250 °C + Water Quenched [25] |
Mg-1Ce | 124.6 ± 1.5 | 212.7 ± 4.7 | 3.3 | Cast + hot rolled at 400 °C and annealed for 1 h at 300 °C + Water Quenched [25] |
Mg-1Ce | 106 ± 4.7 | 197.6 ± 4.2 | 11.9 | Cast + hot rolled at 400 °C and annealed for 1 h at 350 °C + Water Quenched [25] |
Mg-1Ce | 101.5 ± 1.6 | 203.1 ± 2.6 | 14.9 | Cast + hot rolled at 400 °C and annealed for 1 h at 400 °C + Water Quenched [25] |
Mg-1Ce | 99 ± 2.1 | 203.3 ± 4.4 | 16.9 | Cast + hot rolled at 400 °C and annealed for 1 h at 450 °C + Water Quenched [25] |
2.3. Gadolinium
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-2Gd | 37.992 | 103.73 | 6.362 | As-cast [12] |
Mg-2Gd | 33.430 | 87.002 | 4.928 | As-cast + solutionized (T4) [12] |
Mg-2Gd | 41.274 | 101.368 | 5.686 | As-cast + solutionized + artificially aged (T6) [12] |
Mg-5Gd | 54.752 | 128.468 | 6.620 | As-cast [12] |
Mg-5Gd | 44.850 | 98.012 | 6.042 | As-cast + solutioned (T4) [12] |
Mg-5Gd | 42.604 | 78.658 | 4.270 | As-cast + solutionized + artificially aged (T6) [12] |
Mg-10Gd | 84.110 | 131.152 | 2.500 | As-cast [12] |
Mg-10Gd | 69.120 | 111.650 | 3.152 | Cast + solutioned(T4) [12] |
Mg-10Gd | 85.430 | 132.258 | 2.182 | Cast + solutionized + artificially aged (T6) [12] |
Mg-15Gd | 127.646 | 175.220 | 0.950 | As-Cast [12] |
Mg-15Gd | 118.052 | 186.844 | 2.440 | Cast + solutionized(T4) [12] |
Mg-15Gd | 201.396 | 250.918 | 0.740 | Cast + solutionized + artificial aged (T6) [12] |
Mg-3.11Gd | 60 | 160 | 13 | Cast + Solution treatment at 535 °C/1.5 h [27] |
Mg-5.73Gd | 80 | 180 | 11 | Cast + Solution treatment at 535 °C/4 h [27] |
Mg-9.28Gd | 100 | 190 | 9 | Cast + Solution treatment at 535 °C/6.5 h [27] |
Mg-14.2Gd | 130 | 225 | 8 | Cast + Solution treatment at 535 °C/9 h [27] |
Mg-19.6Gd | 150 | 255 | 7.5 | Cast + Solution treatment at 540 °C/9.5 h [27] |
Mg-20Gd | 308 | 308 | 12 | Melt Spun [28] |
Mg-20Gd | 254 | 254 | 13 | As-cast [28] |
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-0.22Gd | 120 | 190 | 6 | Cast + hot rolled at 400 °C and annealed for 1 h at 380 °C [29] |
Mg-0.75Gd | 145 | 210 | 12 | Cast + hot rolled at 400 °C and annealed for 1 h at 380 °C [29] |
Mg-2.75Gd | 160 | 205 | 21 | Cast + hot rolled at 400 °C and annealed for 1 h at 380 °C [29] |
Mg-4.65Gd | 165 | 210 | 26 | Cast + hot rolled at 400 °C and annealed for 1 h at 380 °C [29] |
Mg-1Gd | 138.2 ± 1.7 | 173.3 ± 4 | 4.8 | Cast + hot rolled at 400 °C [25] |
Mg-1Gd | 129.3 ± 4.9 | 191.2 ± 5.9 | 3.4 | Cast + hot rolled at 400 °C and annealed for 1 h at 250 °C + Water Quenched [25] |
Mg-1Gd | 124.5 ± 1.4 | 225 ± 2.6 | 4.2 | Cast + hot rolled at 400 °C and annealed for 1 h at 300 °C + Water Quenched [25] |
Mg-1Gd | 111 ± 4.8 | 240 ± 22 | 29.7 | Cast + hot rolled at 400 °C and annealed for 1 h at 350 °C + Water Quenched [25] |
Mg-1Gd | 71.3 ± 3.4 | 184.9 ± 2.5 | 29.6 | Cast + hot rolled at 400 °C and annealed for 1 h at 400 °C + Water Quenched [25] |
Mg-1Gd | 70.4 ± 2.4 | 220.6 ± 2.9 | 29.6 | Cast + hot rolled at 400 °C and annealed for 1 h at 450 °C + Water Quenched [25] |
Mg-1.55Gd | 102 | 214 | 23.9 | Cast + Solution treated at 530 °C for 3 h + 560 °C for 5 h + Extruded at 450 °C [30] |
Mg-1.55Gd | 130 | 210 | 15.8 | Cast + Solution Treated at 530 °C for 3 h + 560 °C for 5 h + Extruded at 510 °C [30] |
2.4. Lanthanum
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-0.51La | 80 | 135 | 5 | High pressure die-cast [6] |
Mg-0.94La | 90 | - | 4.5 | High pressure die-cast [6] |
Mg-1.71La | 110 | - | 3.72 | High pressure die-cast [6] |
Mg-3.44La | 140 | 170 | 1 | High pressure die-cast [6] |
Mg-5.07La | 168 | - | 0.75 | High pressure die-cast [6] |
Mg-0.22La | 115 | 232 | 19.4 | Cast + Solution treated at 560 °C for 8 h + Extruded at 450 °C [30] |
Mg-0.22La | 150 | 220 | 13.8 | Cast + Solution treated at 560 °C for 8 h + Extruded at 520 °C [30] |
2.5. Erbium
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-3.6Er | 90 | 140 | 20 | Cast + solution treated at 500 °C for 8 h, + aged at 200 °C for 8 h [33] |
Mg-2Er | 83 | 251 | 19.6 | Die cast + homogenized at 520 °C for 48 h + Extruded at 400 °C + annealed at 400 °C/60 min [32] |
47.0 ± 1.5 * | 205.0 ± 5.0 * | 33.0 ± 3.0 * | ||
Mg-4Er | 80 | 184 | 28.4 | Die cast + homogenized at 520 °C for 48 h + Extruded at 440 °C + annealed at 450 °C/20 min [32] |
47.0 ± 1.3 * | 176.0 ± 3.4 * | 35.0 ± 3.8 * | ||
Mg-6Er | 72 | 195 | 29.4 | Die cast + homogenized at 520 °C for 48 h + Extruded at 440 °C + annealed at 450 °C/30 min [32] |
47.0 ± 1.5 * | 170.0 ± 4.2 * | 42.3 ± 3.3 * |
2.6. Neodymium
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-0.47Nd | 81 | 189 | 9.5 | High Pressure Die-cast [6] |
Mg-0.76Nd | 85 | - | 6.75 | High Pressure Die-cast [6] |
Mg-1.25Nd | 92 | - | 4.8 | High Pressure Die-cast [6] |
Mg-2.60Nd | 115 | - | 4.1 | High Pressure Die-cast [6] |
Mg-3.53Nd | 130 | 140 | 2.5 | High Pressure Die-cast [6] |
Mg-1.2Nd | 95 | 123 | 4.61 | As-cast [34] |
Mg-1.85Nd | 121.2 | 155.8 | 2.76 | As-cast [34] |
Mg-3.59Nd | 141.2 | 153.6 | 1.08 | As-cast [34] |
Mg-2Nd | 77 | 193 | 30 | Cast +Extruded at 380 °C [35] |
102 * | 327 * | - | ||
Mg-2Nd | 123 | 240 | 26 | Cast + Extruded at 380 °C + annealing at 204 °C for 16 h (T5(1)) [35] |
106 * | 340 * | - | ||
Mg-2Nd | 102 | 242 | 27.5 | Cast + Extruded at 380 °C + annealing at 204 °C for 48 h (T5(2)) [35] |
110 * | 340 * | - | ||
Mg-2Nd | 125 | 220 | 15 | Cast + Extruded at 380 °C + solution treatment at 510 °C for 3 h + annealing at 204 °C for 16 h (T6(1)) [35] |
105 * | 320 * | - | ||
Mg-2Nd | 70 | 230 | 18.5 | Cast + Extruded at 380 °C + solution treatment at 510 °C for 3 h + annealing at 204 °C for 48 h (T6(2)) [35] |
85 * | 335 * | - |
2.7. Dysprosium
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-5Dyd | 48 | 77 | 4.6 | As-Cast(F) [37] |
Mg-5Dy | 40 | 76 | 3.3 | Cast + Solutionized at 520 °C for 24 h + Water Quenched (T4) [37] |
Mg-10Dy | 82 | 130 | 5.5 | As-Cast(F) [37] |
Mg-10Dy | 63 | 104 | 4 | Cast + Solutionized at 520 °C for 24 h + Water Quenched (T4) [37] |
Mg-10Dy | 65 | 108 | 3.8 | Cast + Solutionized at 520 °C for 24 h + Water Quenched + aged at 250 °C for 16 h (T6-1) [38] |
Mg-10Dy | 70 | 95 | 4.2 | Cast + Solutionized at 520 °C for 24 h + Water Quenched + aged at 200 °C for 168 h (T6-2) [38] |
Mg-15Dy | 105 | 125 | 1.9 | As-Cast(F) [37] |
Mg-15Dy | 68 | 125 | 3 | Cast + Solutionized at 520 °C for 24 h + Water Quenched (T4) [37] |
Mg-15Dy | 72 | 113 | 2 | Cast + Solutionized at 520 °C for 24 h + Water Quenched + aged at 250 °C for 16 h (T6-1) [38] |
Mg-15Dy | 104 | 137 | 2.2 | Cast + Solutionized at 520 °C for 24 h + Water Quenched + aged at 200 °C for 168 h (T6-2) [38] |
Mg-20Dy | 120 | 142 | 1.5 | As-Cast(F) [37] |
Mg-20Dy | 110 | 148 | 1.25 | Cast + Solutionized at 520 °C for 24 h + Water Quenched (T4) [37] |
Mg-20Dy | 120 | 140 | 0.6 | Cast + Solutionized at 520 °C for 24 h + Water Quenched + aged at 250 °C for 16 h (T6-1) [38] |
Mg-20Dy | 168 | 223 | 0.9 | Cast + Solutionized at 520 °C for 24 h + Water Quenched + aged at 200 °C for 168 h (T6-2) [38] |
Mg-12.1Dy | 83 | 114 | 2.8 | As-Cast [36] |
3. Ternary Systems
3.1. Mg-RE Ternary Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-10Y-2.5Sm | - | 207 | 2.53 | Cast + Solution treated at 540 °C for 6 h + Water Quenched+ Aged at 250 °C for 2 h [39] |
Mg-8.3Gd-1.9Er | 112 | 246 | 6.5 | As-Cast [41] |
Mg-8.3Gd-1.9Er | 190 | 308 | 4.9 | Cast + solution treated at 570 °C for 6 h + Isothermally aged at 200 °C [41] |
Mg-2.5La-3.6Nd | 195 | - | 2.2 | High Pressure Die Cast [40] |
Mg-2.5La-2.5Y | 170 | 5 | ||
Mg-2.5La-4.1Y | 186 | - | 4 | |
Mg-2.4La-5.2Gd | 184 | - | 3.9 |
3.2. Mg-Al-RE Ternary Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-3Al-0.2Ce | 120 | 235 | 18 | Cast + Homogenized at 400 °C + Extrusion at 350 °C [24] |
Mg-3Al-0.5Ce | 125 | 230 | 20 |
3.3. Mg-Zn-RE Ternary Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-2Zn-0.2Ce | 135 | 225 | 27 | Cast + Extruded at 400 °C [42] |
Mg-5Zn-0.2Ce | 135 | 247 | 15 | |
Mg-8Zn-0.2Ce | 136 | 289 | 16 | |
Mg-1.11Zn-1.68Gd | 129.9 | 233.4 | 40.3 | Cast + homogenized at 500 °C for 10 h + Rolled at 430 °C + annealed at 400 °C for 1 h (Tested in Rolling Direction) [44] |
Mg-1.11Zn-1.68Gd | 113.8 | 221.2 | 44.5 | Cast + homogenized at 500 °C for 10 h + Rolled at 430 °C + annealed at 400 °C for 1 h (Tested in 45° to Rolling Direction) [44] |
Mg-1.11Zn-1.68Gd | 110.1 | 218.4 | 44.6 | Cast + homogenized at 500 °C for 10 h + Rolled at 430 °C + annealed at 400 °C for 1 h (Tested in Transverse Direction) [44] |
Mg-1.06Zn-2.74Gd | 130.6 | 220.0 | 40.3 | Cast + homogenized at 500 °C for 10 h + Rolled at 430 °C + annealed at 400 °C for 1 h (Tested in Rolling Direction) [44] |
Mg-1.06Zn-2.74Gd | 121.0 | 220.3 | 47.3 | Cast + homogenized at 500 °C for 10 h + Rolled at 430 °C + annealed at 400 °C for 1 h (Tested at 45° to Rolling Direction) [44] |
Mg-1.06Zn-2.74Gd | 118.0 | 220.9 | 45.1 | Cast + homogenized at 500 °C for 10 h + Rolled at 430 °C + annealed at 400 °C for 1 h (Tested in Transverse Direction) [44] |
Mg-2Zn-0.4Ce | 190 | 255 | 18 | Cast + Extruded at 310 °C [43] |
Mg-2Zn-0.4Gd | 125 | 220 | 26 | |
Mg-2Zn-0.4Y | 160 | 240 | 30 | |
Mg-2Zn-0.4Nd | 175 | 245 | 28 | |
Mg-2Zn-2Gd | 71 | 135 | 5.5 | Gravity permanent mold cast [48] |
Mg-6Zn-2Gd | 89 | 170 | 4.5 | |
Mg-2Zn-10Gd | 119 | 146 | 1.5 | |
Mg-6Zn-10Gd | 116 | 144 | 1 | |
Mg-0.2Zn-12.12Dy | 92 | 125 | 6.3 | As-Cast [36] |
Mg-1.2Zn-12Dy | 100 | 145 | 5.2 | |
Mg-2.4Zn-11.9Dy | 95 | 128 | 1.2 | |
Mg-2Zn-2.3Er | 310 ± 6.5 | 320 ± 7.9 | 12.8 ± 1.2 | Cast + annealed at 400 °C for 10 h + Extruded at 300 °C [47] |
Mg-2Zn-2.3Er | 247 ± 6.2 | 279 ± 6.8 | 12.1 ± 1.6 | Cast + annealed at 400 °C for 10 h + Extruded at 400 °C [47] |
Mg-3.7Zn-4Er | 295 ± 2.8 | 330 ± 3.0 | 13.7 ± 2.1 | Cast + annealed at 400 °C for 10 h + Extruded at 300 °C [47] |
Mg-3.7Zn-4Er | 278 ± 2.9 | 319 ± 3.1 | 17.6 ± 2.0 | Cast + annealed at 400 °C for 10 h + Extruded at 400 °C [47] |
Mg-5.5Zn-6.2Er | 299 ± 6.3 | 343 ± 7.0 | 16.8 ± 1.2 | Cast + annealed at 400 °C for 10 h + Extruded at 300 °C [47] |
Mg-5.5Zn-6.2Er | 283 ± 2.2 | 328 ± 2.5 | 19.7 ± 1.2 | Cast + annealed at 400 °C for 10 h + Extruded at 400 °C [47] |
Mg-4Zn-0.1Ce | 109 ± 2.6 | 234 ± 4.0 | 17.3 ± 0.94 | Cast + homogenized for 3 h at 300 °C + 24 h at 400 °C + hot rolled at 400 °C + annealed at 400 °C for 30 min [50] |
Mg-3Zn-0.3Er | 70 | 180 | 12.5 | As-Cast [51] |
Mg-3Zn-0.38Er | 75 | 185 | 13 | |
Mg-3Zn-0.5Er | 77 | 186 | 13.5 | |
Mg-3Zn-0.75Er | 80 | 155 | 11.5 | |
Mg-3Zn-2.5Er | 82 | 164 | 8 | |
Mg-3Zn-3Er | 104 | 184 | 7.5 | |
Mg-3Zn-3.8Er | 103 | 162 | 6 | |
Mg-5Zn-0.5Er | 94 | 205 | 11.5 | |
Mg-5Zn-0.63Er | 96 | 210 | 12.5 | |
Mg-5Zn-0.83Er | 97 | 209.52 | 11 | |
Mg-5Zn-1.25Er | 98 | 187.6 | 10.5 | |
Mg-5Zn-2.5Er | 99 | 185 | 9 | |
Mg-5Zn-5Er | 124 | 213.7 | 8.5 | |
Mg-5Zn-6.25Er | 117 | 186.03 | 7.5 | |
Mg-7Zn-0.7Er | 102.11 | 195 | 6.5 | |
Mg-7Zn-0.88Er | 120 | 197 | 7.5 | |
Mg-7Zn-1.17Er | 124 | 196 | 7 | |
Mg-7Zn-1.75Er | 126 | 158 | 6.5 | |
Mg-7Zn-3.5Er | 128 | 169 | 6 | |
Mg-7Zn-7Er | 130.24 | 210 | 5.5 | |
Mg-7Zn-8.75Er | 128.49 | 176 | 3.5 | |
Mg-5Zn-0.63Er | 112.5 | 223 | 11.5 | As-Cast [46] |
Mg-5Zn-0.63Er | 106 | 206.8 | 13.6 | Cast + solution heat-treated at 440, 460, 480 and 500 °C for 10 h (T4) [46] |
Mg-5Zn-0.63Er | 124 | 261 | 10.5 | Cast + solution heat-treated at 440, 460, 480 and 500 °C for 10 h + isothermally aged at 175 °C (T6) [46] |
Mg-5Zn-2Er | - | 151 | 7 | As-Cast [45] |
Mg-5Zn-2Er | - | 210 | 11 | Ultrasonic Treatment for 100 s and power 600 W + Cast [45] |
Mg-6Zn-0.3Er | 72 | 210 | 12 | As-Cast [52] |
Mg-6Zn-0.3Er | 138 | 289 | 25 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C [52] |
Mg-6Zn-0.3Er | 157 | 291 | 18 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C + aged at 200 °C [52] |
Mg-6Zn-0.5Er | 87 | 184 | 12 | As-Cast [52] |
Mg-6Zn-0.5Er | 155 | 310 | 17 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C [52] |
Mg-6Zn-0.5Er | 183 | 329 | 12 | Cast+ homogenized at 400 °C for 10 h+ extruded at 300 °C + aged at 200 °C [52] |
Mg-6Zn-1.0Er | 104 | 224 | 11 | As-Cast [52] |
Mg-6Zn-1.0Er | 187 | 295 | 18 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C [52] |
Mg-6Zn-1.0Er | 193 | 302 | 14 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C + aged at 200 °C [52] |
Mg-6Zn-1.5Er | 100 | 203 | 10 | As-Cast [52] |
Mg-6Zn-1.5Er | 175 | 296 | 17 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C [52] |
Mg-6Zn-1.5Er | 188 | 300 | 15 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C + aged at 200 °C [52] |
Mg-6Zn-2.0Er | 110 | 198 | 6 | As-Cast [52] |
Mg-6Zn-2.0Er | 194 | 304 | 16 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C [52] |
Mg-6Zn-2.0Er | 193 | 301 | 12 | Cast + homogenized at 400 °C for 10 h + extruded at 300 °C + aged at 200 °C [52] |
Mg-14.4Zn-3.3Y | 171 | 320 | 12 | Cast + solutionized at 480 °C for 24 h + extruded at 430 °C [49] |
213 * | 530 * | 14 * | ||
Mg-14.4Zn-3.3Y | 365.0 ± 3.5 | 380 | 8 | Cast + solutionized at 480 °C for 24 h + extruded at 430 °C + aged at 150 °C [49] |
267.7 ± 0.7 * | 550 * | 12 * |
3.4. Mg-Zr-RE Ternary Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-0.5Zr-0.4Y | 20.9 ± 1.0 | 119.3 ± 7.2 | 4.3 ± 2.5 | As-Cast [4] |
25.6 ± 2.0 * | 200.8 ± 16.6 * | 15.6 ± 3.6 * | ||
Mg-0.5Zr-0.4Gd | 52.2 ± 3.8 | 144.6 ± 1.7 | 22.1 ± 1.6 | |
40.2 ± 1.1 * | 231.3 ± 8.7 * | 24.4 ± 1.5 * | ||
Mg-0.5Zr-0.4Dy | 53.7 ± 3.0 | 140.7 ± 0.4 | 17.5 ± 0 | |
32.5 ± 2.6 * | 231.6 ± 16 * | 22.7 ± 2.0 * | ||
Mg-0.5Zr-0.4Sm | 51.6 ± 3.1 | 144.2 ± 6.5 | 17.0 ± 2.5 | |
36.2 ± 1.6 * | 237.1 ± 3.0 * | 22.9 ± 2.6 * | ||
Mg-0.6Zr-8Gd | 82 | 141 | 6.2 | Cast + solution treated at 530 °C for 10 h + Aged at 230 °C [53] |
Mg-0.6Zr-8Gd | 81 | 155 | 6.4 |
3.5. Mg-Sn-RE Ternary Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ducility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-1Sn-1.5Y | 165 | 199 | 12.8 | Cast + Homogenized at 480 °C for 12 h + Extruded at 350 °C [54] |
Mg-1Sn-3Y | 295 | 305 | 2.4 | |
Mg-1Sn-3.5Y | 136 | 225 | 14 | |
Mg-1.65Sn-2Nd | - | 115 | 8 | As-Cast [55] |
Mg-4.92Sn-2Nd | - | 132.5 | 8.5 | |
Mg-8.23Sn-2Nd | - | 140 | 10 | |
Mg-11.52Sn-2Nd | - | 135 | 8.75 |
3.6. Other Ternary Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-1.8Mn-0.1Er | 173 | 255 | 7 | Cast + homogenized at 450 °C for 4 h + Extruded at 450 °C + Annealed at 390 °C for 1 h [56] |
Mg-1.8Mn-0.4Er | 224 | 276 | 9 | |
Mg-1.8Mn-0.7Er | 228 | 275 | 12.5 | |
Mg-10Er-2Cu | 320 | 380 | 15 | Cast + homogenized at 450 °C for 24 h + Extruded at 430 °C [57] |
4. Higher Alloy Systems
4.1. Mg-RE Higher Alloy Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-4Y-2.3Nd-0.88Gd | 221 ± 1.7 | 295 ± 3.1 | 10.7 ± 0.8 | Cast + Extruded at 350 °C [58] |
Mg-4Y-3.2RE | - | 240 | - | Cast + Annealed at 525 °C [59] |
Mg-4Y-3.2RE | - | 320 | - | Cast + Annealed at 525 °C + Aged at 200 °C [59] |
Mg-4Y-3RE | 165 | 250 | 2.0 | T6 [60] |
Mg-4Y-3RE (2.2Nd) | - | 230 | 16 | Annealed at 525 °C/5 h [61] |
Mg-4Y-3RE (2.2Nd) | - | 300 | 6 | Annealed at 525 °C/5 h + Aged at 200 °C [61] |
Mg-4Y-3RE (2.2Nd) | - | 320 | 20 | Annealed at 525 °C/5 h + Extruded at 300 °C [61] |
Mg-4Y-3RE | 185 ± 12 | 261 ± 5 | 31 ± 1 | As-Received [62] |
Mg-4Y-3RE | 270 ± 15 | 348 ± 6 | 16 ± 3 | As Received + T5 [62] |
Mg-4Y-3RE | 263 ± 7 | 311 ± 11 | 23 ± 3 | Forged [62] |
Mg-4Y-3RE | 318 ± 9 | 368 ± 10 | 17 ± 1 | Forged + Aged at 210 °C/32h [62] |
Mg-4Y-3RE | 344 ± 11 | 388 ± 12 | 23 ± 1 | Forged + Aged at 180 °C/60 h [62] |
Mg-4Y-3RE | 286 ± 10 | 341 ± 4 | 28 ± 1 | Forged + Aged at 150 °C/104 h [62] |
4.2. Mg-Al-RE Higher Alloy Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductiliy (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-10Gd-3Y-0.8Al | 136 | 215 | 4.8 | As-Cast [64] |
Mg-10Gd-3Y-0.8Al | 126 | 226 | 13 | Cast + solution treated at 520 °C for 6 h + 550 °C for 7 h (T4A) [64] |
Mg-10Gd-3Y-0.8Al | 227 | 353 | 3.5 | Cast + solution treated at 520 °C for 6 h + 550 °C for 7 h + peak-aged at 200 °C (T6A) [64] |
Mg-10Gd-3Y-0.8Al | 213 | 301 | 12.1 | Cast + solution treated at 520 °C for 6 h + 550 °C for 7 h + peak-aged at 225 °C (T6B) [64] |
Mg-3Al-1.8Ce-0.3Y-0.2Mn | 158 | 255 | 10 | Die-cast [65] |
Mg-3.4Al-2.4Cemm-0.3Ymm-0.3Mn | 166 | 267 | 11 | Die-cast [66] |
158* | 372* | 17* | ||
Mg-4Al-4RE-0.18Mn (2.35%Ce, 1.07%La, 0.59%Nd, 0.16%Pr) | 47 | 146 | 7.1 | Sand Cast [67] |
178 | 241 | 10.8 | High Pressure Die Cast [67] | |
Mg-4Al-4RE-0.4Mn (RE = 52–55Ce, 3–5La, 16–20Nd, 5–6Pr) | 140 | 247 | 11 | Die-cast [68] |
Mg-4Al-4La-0.4Mn | 146 | 264 | 13 | Die-cast [68] |
Mg-4Al-1Ce-0.3Mn | 146 | 232 | 9 | As-Cast [69] |
Mg-4Al-2Ce-0.3Mn | 148 | 247 | 12 | As-Cast [69] |
Mg-4Al-4Ce-0.3Mn | 157 | 250 | 11 | As-Cast [69] |
Mg-4Al-6Ce-0.3Mn | 161 | 254 | 10 | As-Cast [69] |
Mg-4Al-1La-0.3Mn | 133 | 236 | 12 | As-Cast [70] |
Mg-4Al-2La-0.3Mn | 140 | 245 | 13 | As-Cast [70] |
Mg-4Al-4La-0.3Mn | 155 | 265 | 12 | As-Cast [70] |
Mg-4Al-6La-0.3Mn | 171 | 257 | 7 | As-Cast [70] |
Mg-4Al-1Pr-0.3Mn | 145 | 241 | 13 | As-Cast [71] |
Mg-4Al-2Pr-0.3Mn | 148 | 248 | 13 | As-Cast [71] |
Mg-4Al-4Pr-0.3Mn | 165 | 262 | 16 | As-Cast [71] |
Mg-4Al-6Pr-0.3Mn | 155 | 251 | 10 | As-Cast [71] |
Mg-4Al-1Nd-0.3Mn | 150 | 244 | 12 | As-Cast [72] |
Mg-4Al-2Nd-0.3Mn | 154 | 248 | 13 | As-Cast [72] |
Mg-4Al-4Nd-0.3Mn | 156 | 258 | 15 | As-Cast [72] |
Mg-4Al-6Nd-0.3Mn | 165 | 261 | 12 | As-Cast [72] |
Mg-5Al-0.3Mn-0.5Ce | 71 | 173 | 9 | As-Cast [73] |
Mg-5Al-0.3Mn-1.0Ce | 82 | 184 | 15 | As-Cast [73] |
Mg-5Al-0.3Mn-1.5Ce | 88 | 203 | 20 | As-Cast [73] |
Mg-5Al-0.3Mn-1.5Ce | 225 | 318 | 9 | Cast + Hot Rolled at 400 °C [73] |
Mg-5Al-0.3Mn-2.0Ce | 75 | 177 | 13 | As-Cast [73] |
Mg-5Al-0.3Mn-3.0Ce | 68 | 165 | 6 | As-Cast [73] |
Mg-6Al-2Ca-1Nd | 180 | 286 | 9.5 | Cast + Homogenised at 460 °C for 24 h + Extruded at 330 °C [74] |
Mg-6Al-2Ca-2Nd | 186 | 306 | 12.3 | |
Mg-6Al-2Ca-3Nd | 205 | 310 | 13 | |
Mg-6Al-2Ca-4Nd | 210 | 319 | 12.8 | |
Mg-9Al-0.5Zn-0.5RE | 91 | 158 | 1.65 | As-Cast [75] |
Mg-9Al-0.5Zn-1.0RE | 90 | 165 | 1.62 | |
Mg-9Al-0.5Zn-1.2RE | 88 | 170 | 1.6 | |
Mg-9Al-0.5Zn-1.5RE | 93 | 174 | 1.5 | |
Mg-9Al-0.5Zn-1Ca-1RE | 90 | 169 | 1.6 | |
Mg-9Al-0.5Zn-2Ca-1RE | 78 | 150 | 1.4 | |
Mg-9Al-0.5Zn-3Ca-1RE | 75 | 129 | 1.3 | |
Mg-9Al-0.5Zn-4Ca-1RE | 70 | 115 | 0.9 |
4.3. Mg-Li-RE Higher Alloy System
Alloy (RE = 85% La, 10% Pr, 5% Ce) (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-1.21Li-1.12Ca-1Y | 44.00 | 51.71 | 1.47 | As-Cast [77] |
Mg-1.21Li-1.12Ca-1Y | 115.02 | 183.72 | 14.45 | Cast + Extruded [77] |
Mg-7Li-6A1-6Zn-0.2 RE | - | 194 | 2.8 | As-cast [78] |
Mg-7Li-6A1-6Zn-0.4 RE | - | 200 | 2.4 | |
Mg-7Li-6A1-6Zn-0.6 RE | - | 204 | 2.6 | |
Mg-7Li-6A1-6Zn-0.8 RE | - | 205 | 2.5 | |
Ma-7Li-6A1-6Zn-1RE | - | 209 | 2.1 | |
Mg-3.5Li-2Al-2RE | 95 | 190 | 22 | Cast + Extruded [79] |
Mg-5.5Li-2Al-2RE | 140 | 235 | 23 | |
Mg-8.5Li-2Al-2RE | 100 | 150 | 32 | |
Mg-8Li-1Al-1Ce | 141 | 160 | 16 | As-Cast [80] |
Mg-8Li-1Al-1Ce | 175 | 187 | 33 | Cast + Extruded at 220 °C [80] |
Mg-8Li-7Al-Si-4.5RE | 200 | 260 | 14 | Wrought [81] |
4.4. Mg-Zr-RE Higher Alloy Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-10Gd-3Y-0.4Zr | 151 | 230 | 4.4 | As-Cast [64] |
Mg-10Gd-3Y-0.4Zr | 131 | 247 | 14.4 | Cast + Solution Treated at 500 °C for 6 h (T4) [64] |
Mg-10Gd-3Y-0.4Zr | 231 | 349 | 2.2 | Cast + Solution Treated at 500 °C for 6 h + peak-aged at 225 °C [64] |
Mg-2Y-1.5LPC-0.4Zr (LPC = 85% La, 8% Ce, 7% Pr) | 90 | 180 | 25 | Cast + Solution treated for 10 h at 525 °C [82] |
Mg-4Y-1.5LPC-0.4Zr (LPC = 85% La, 8% Ce, 7% Pr) | 110 | 195 | 20 | |
Mg-6Y-1.5LPC-0.4Zr (LPC = 85% La, 8% Ce, 7% Pr) | 135 | 250 | 10 | |
Mg-4Y-3RE-0.4Zr | - | 235 | 17 | Cast + Annealed at 525 °C/5 h [83] |
Mg-4Y-3RE-0.4Zr | - | 300 | 6 | Cast + Annealed at 525 °C/5h + Aged at 200 °C [83] |
Mg-4Y-3RE-0.4Zr | - | 325 | 20 | Cast + Annealed at 525 °C/5 h + Extruded at 100:1 at 400 °C [83] |
Mg-4Y-3RE-0.4Zr | - | 330 | 20 | Cast + Annealed at 525 °C/5 h + Extruded at 100:1 at 400 °C + Aged at 200 °C [83] |
Mg-4Y-3RE-0.4Zr | - | 350 | 13 | Cast + Annealed at 525 °C/5 h + Extruded at 2.8:1 at 400 °C [83] |
Mg-4Y-3RE-0.4Zr | - | 370 | 5 | Cast + Annealed at 525 °C/5 h + Extruded at 2.8:1 at 400 °C + Aged at 200 °C [83] |
Mg-4Y-2.4Nd-0.2Zn-0.4Zr | 150 | 197 | 7.5 | As-cast (F) [60] |
Mg-4Y-2.4Nd-0.2Zn-0.4Zr | 162 | 240 | 15 | Cast + solution treated at 490 °C+ water quenched (T4) [60] |
Mg-4Y-2.4Nd-0.2Zn-0.4Zr | 268 | 339 | 4.0 | Cast + solution treated at 490 °C + water quenched + Aged at 200 °C (T60) [60] |
Mg-4Y-2.4Nd-0.2Zn-0.4Zr | 265 | 330 | 6.5 | Cast + solution treated at 500 °C + water quenched + Aged at 225 °C (T61) [60] |
Mg-4Y-2.4Nd-0.2Zn-0.4Zr | 195 | 260 | 3.0 | Cast + solution treated at 510 °C + water quenched + Aged at 250 °C (T62) [60] |
Mg-2.7Nd-0.2Zn-0.4Zr | 363 ± 6.3 | 376 ± 4.3 | 8.4 ± 2.2 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Extruded at 250 °C [84] |
Mg-2.7Nd-0.2Zn-0.4Zr | 394 ± 5.2 | 417 ± 7.6 | 2.6 ± 0.2 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Extruded at 250 °C + Aged at 200 °C for 8 h [84] |
Mg-2.7Nd-0.2Zn-0.4Zr | 121 ± 4.8 | 217 ± 3.3 | 22.2 ± 2.4 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Extruded at 250 °C + solution-treated at 530 °C for 30 min [84] |
Mg-2.7Nd-0.2Zn-0.4Zr | 191 ± 2.6 | 326 ± 2.8 | 12.2 ± 1.2 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Extruded at 250 °C + solution-treated at 530 °C for 30 min + Aged at 200 °C for 8 h [84] |
Mg-0.44Zr-3.09Nd, 0.22Zn | 293 ± 5.1 | 307 ± 1.9 | 15.9 ± 3.1 | Cast + Extruded at 350 °C [58] |
Mg-0.45 Zr-2.73Nd-0.16Zn | 175 | 240 | 11 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Extruded at 350 °C [85] |
Mg-0.45 Zr-2.73Nd-0.16Zn | 260 | 300 | 29 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Extruded at 350 °C (Cyclic Extrusion and Compression) [85] |
Mg-0.4Zr-3Nd-1.6Zn | 90 ± 7 | 194 ± 3 | 12.0 ± 0.8 | Cast + Solution treated at 540 °C for 10 h + Water quenched (T4) [86] |
Mg-0.4Zr-3Nd-1.6Zn | 308 ± 6 | 312 ± 2 | 12.2 ± 0.6 | T4 + Extruded at 320 °C with ratio 8 (R8) [86] |
Mg-0.4Zr-3Nd-1.6Zn | 333 ± 4 | 334 ± 4 | 7.9 ± 0.2 | R8 + Aging [86] |
Mg-0.4Zr-3Nd-1.6Zn | 156 ± 1 | 233 ± 4 | 25.9 ± 0.8 | T4 + Extruded at 320 °C with ratio 25 (R25) [86] |
Mg-0.4Zr-3Nd-1.6Zn | 177 ± 2 | 238 ± 3 | 20.4 ± 0.3 | R25 + Aging [86] |
Mg-2.25Nd-0.11Zn-0.43Zr | 204 ± 5.3 | 247 ± 4.4 | 20.6 ± 1.6 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Single Extruded at 290 °C [87] |
Mg-2.25Nd-0.11Zn-0.43Zr | 276 ± 6.0 | 309 ± 6.4 | 34.3 ± 3.4 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Double Extruded at 320 °C [87] |
Mg-2.70Nd-0.20Zn-0.41Zr | 163 ± 1.9 | 245 ± 2.2 | 14 ± 1.5 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Single Extruded at 350 °C [87] |
Mg-2.70Nd-0.20Zn-0.41Zr | 275 ± 4.7 | 308 ± 2.3 | 32.8 ± 1.4 | Cast + solution-treated at 540 °C for 10 h + Water quenched + Single Extruded at 320 °C [87] |
Mg-4Y-3RE-0.5Zr | 225 | 331 | 6 | Cast + solution-treated at 520 °C for 8 h + Water quenched + Aged at 250 °C for 16 h [88] |
Mg-3Nd-1Gd-0.5Zr-0.4Zn | 163 | 293 | 7 | Cast + solution-treated at 520 °C for 8 h + Water quenched + Aged at 200 °C for 16 h [88] |
Mg-0.5Zr-0.4Y-0.4Gd | 51.7 ± 2.8 | 140.2 ± 0.6 | 27.7 ± 1.5 | As-Cast [4] |
43.7 ± 2.7 * | 242.4 ± 16.2 * | 24.9 ± 0.2 * | ||
Mg-0.5Zr-0.4Y-0.4Dy | 48.9 ± 2.5 | 132.2 ± 1.5 | 29.3 ± 1.8 | |
43.8 ± 1.6 * | 247.7 ± 7.1 * | 25.0 ± 0.3 * | ||
Mg-0.5Zr-0.4Y-0.4Sm | 55.7 ± 2.7 | 148.6 ± 2.9 | 27.0 ± 2.3 | |
47.0 ± 5.7 * | 260.8 ± 10.2 * | 25.1 ± 0.2 * | ||
Mg-0.5Zr-0.4Gd-0.4Dy | 47.6 ± 2.7 | 143.7 ± 2.4 | 22.2 ± 2.2 | |
38.1 ± 2.3 * | 243.5 ± 4.7 * | 25.6 ± 0.3 * | ||
Mg-0.5Zr-0.4Gd-0.4Sm | 51.7 ± 0.3 | 145.1 ± 3.6 | 26.4 ± 0.7 | |
44.1 ± 0.8 * | 247.5 ± 1.0 * | 24.8 ± 1.0 * | ||
Mg-0.5Zr-0.4Dy-04Sm | 49.2 ± 2.1 | 148.4 ± 2.0 | 19.6 ± 2.5 | |
38.2 ± 1.0 * | 250.0 ± 9.3 * | 24.7 ± 1.5 * | ||
Mg-0.5Zr-0.4Gd-0.4Dy-0.4Sm | 57.8 ± 1.9 | 140.8 ± 4.4 | 30.8 ± 0.6 | |
50.9 ± 0.4 * | 264.7 ± 2.0 * | 26.5 ± 0.4 * | ||
Mg-0.5Zr-0.4Y-0.4Gd-0.4Dy-0.4Sm | 49.6 ± 1.1 | 146.0 ± 1.3 | 17.4 ± 2.0 | |
45.6 ± 1.6 * | 249.4 ± 7.6 * | 24.2 ± 2.0 * | ||
Mg-6Gd-2Nd-0.5Zr | 118 | 220 | 17 | Cast + Solution Treated at 500 °C + Quenched [89] |
Mg-6Gd-2Nd-0.5Zr | 175 | 345 | 7.5 | Cast + Solution Treated at 500 °C + Quenched + peak-aged (200 °C for 24 h) [89] |
Mg-6Gd-2Nd-0.5Zr | 245 | 340 | 7 | Cast + Solution Treated at 500 °C + Quenched + deformed (5%) and peak-aged at 200 °C for 12 h [89] |
Mg-6Gd-2Nd-0.5Zr | 270 | 350 | 4 | Cast + Solution Treated at 500 °C + Quenched + deformed (10%) and peak-aged at 200 °C for 8 h [89] |
Mg-6Gd-2Nd-0.5Zr | 200 | 275 | 21 | as-extruded at 450 °C [89] |
Mg-6Gd-2Nd-0.5Zr | 250 | 350 | 8 | as-extruded at 350 °C [89] |
Mg-6Gd-2Nd-0.5Zr | 245 | 290 | 29 | extruded at 450 °C and peak-aged at 200 °C for 24 h [89] |
Mg-6Gd-2Nd-0.5Zr | 275 | 375 | 17.5 | extruded at 350 °C and peak-aged 200 °C for 24 h [89] |
Mg-10Gd-3Y-0.5Zr | 178 | 187 | 3.2 | As-Cast [90] |
Mg-10Gd-3Y-0.5Zr | 210 | 312 | 19 | Cast + Friction Stir Processed [90] |
Mg-10Gd-3Y-0.5Zr | 330 | 439 | 3.4 | Cast + Friction Stir Processed+ Aged at 225 °C for 13 h [90] |
Mg-3.99Y-3.81Nd-0.53Zr | - | 167 | 7.4 | As-cast [91] |
Mg-3.99Y-3.81Nd-0.53Zr | - | 260 | 8 | As-Cast + Frictrion stir processed at 60 mm·min−1 and tool rotation rates of 400 r·min−1 [91] |
Mg-3.99Y-3.81Nd-0.53Zr | - | 290 | 17.2 | As-Cast + Frictrion stir processed at 60 mm·min−1 and tool rotation rates of 800 r·min−1 [91] |
Mg-3.99Y-3.81Nd-0.53Zr | - | 280 | 11.4 | As-Cast + Frictrion stir processed at 60 mm·min−1 and tool rotation rates of 1200 r·min−1 [91] |
Mg-3.99Y-3.81Nd-0.53Zr | - | 265 | 9.3 | As-Cast + Frictrion stir processed at 60 mm·min−1 and tool rotation rates of 1500 r·min−1 [91] |
Mg-0.56Zr-9Y-3.24MM | 230 | 240 | 1.0 | As-Cast [92] |
Mg-0.56Zr-9Y-3.24MM | 215 | 245 | 2.5 | Cast + Homogenized at 535 °C for 18 h [92] |
Mg-0.56Zr-9Y-3.24MM | 245 | 305 | 12.5 | Cast + Homogenized at 535 °C for 18 h + Extruded at 420 °C [92] |
Mg-0.56Zr-9Y-3.24MM | 315 | 385 | 6.5 | Cast + Homogenized at 535 °C for 18 h + Extruded at 420 °C + aged at 225 °C for 10 h in air [92] |
Mg-12Gd-3Y-0.4Zr | 187.3 | 282.5 | 6.3 | Cast + Extruded at 400 °C [93] |
Mg-12Gd-3Y-0.4Zr | 309.6 | 381.8 | 4.4 | Cast + Extruded at 400 °C and Hot rolled at 200 °C [93] |
Mg-12Gd-3Y-0.4Zr | 162.0 | 285.4 | 10.9 | Cast + Extruded at 400 °C and Hot rolled at 200 °C + Annealed at 450 °C for 2 h [93] |
Mg-12Gd-3Y-0.4Zr | 141.8 | 252.8 | 8.1 | Cast + Extruded at 400 °C and Hot rolled at 200 °C + Annealed at 500 °C for 2 h [93] |
Mg-12Gd-3Y-0.4Zr | 342.8 | 457.6 | 3.8 | Cast + Extruded at 400 °C and Hot rolled at 200 °C + aged at 225 °C for 17 h (T5) [93] |
Mg-8Gd-0.6Zr-1Er | 96 | 190 | 5.6 | As-Cast [53] |
Mg-8Gd-0.6Zr-1Er | 156 | 234 | 5.8 | Cast + solution treated at 530 °C for 10 h + Aged at 230 °C [53] |
Mg-8Gd-0.6Zr-3Er | 101 | 210 | 5.3 | As-Cast [53] |
Mg-8Gd-0.6Zr-3Er | 173 | 261 | 5.1 | Cast + solution treated at 530 °C for 10 h + Aged at 230 °C [53] |
Mg-8Gd-0.6Zr-5Er | 99 | 205 | 4.9 | As-Cast [53] |
Mg-8Gd-0.6Zr-5Er | 160 | 232 | 3.7 | Cast + solution treated at 530 °C for 10 h + Aged at 230 °C [53] |
4.5. Mg-Zn-RE Higher Alloy Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductiilty (%) | Remarks |
---|---|---|---|---|
Processing Condition and Reference | ||||
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 119 | 187 | 2.1 | As-Cast [94] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 130 | 206 | 5.5 | Cast + homogenized at 520 °C for 12 h [94] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 186 | 297 | 7.3 | Cast + hot rolled at 400 °C [94] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 313 | 373 | 6.4 | Cast + homogenized at 520 °C for 12 h + hot rolled at 400 °C (Reduction 68%) [94] |
Mg-8.2Gd-3.8Y-1Zn-0.4Zr | 318 | 403 | 13.7 | Cast + solution treated at 510 °C for 12 h + hot rolled at 400 °C (Reduction 96%) [95] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 455 | 469 | 1.3 | Cast + Solution treated at 510 °C for 12 h + Rolled at 300 °C + Aged at 200 °C [96] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 393 | 423 | 1.5 | Cast + Solution treated at 510 °C for 12 h + Rolled at 300 °C + Aged at 225 °C [96] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 372 | 473 | 10.2 | Cast + Solution treated at 510 °C for 12 h + Rolled at 400°C + Aged at 200 °C [96] |
Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr | 331 | 436 | 17.8 | Cast + Solution treated at 510 °C for 12 h + Rolled at 400 °C + Aged at 225 °C [96] |
Mg-0.5Zn-3,1Nd-1.7Gd-0.3Zr | 188 | 290 | 7 | Cast + Solutionized at 520 °C/8 h [97] |
Mg-0.5Zn-3,1Nd-1.7Gd-0.3Zr | 220 | 275 | 27 | Cast + Friction Stir processed [97] |
Mg-0.5Zn-3,1Nd-1.7Gd-0.3Zr | 200 | 330 | 11.5 | Cast + Friction stir processed + Solutionized at 520 °C /8 h (T6) [97] |
Mg-0.5Zn-3,1Nd-1.7Gd-0.3Zr | 180 | 320 | 14 | Cast + Friction stir processed + SS + Aged at 200 °C/16 h [97] |
Mg-0.5Zn-3,1Nd-1.7Gd-0.3Zr | 270 | 305 | 14 | Cast + Friction stir processed + Aged at 200 °C/16 h [97] |
Mg-0.5Zn-0.4Zr-2.5Ce | - | 139 | - | As-Cast [113] |
Mg-0.5Zn-0.4Zr-2.5Ce | - | 251.3 | - | Cast + homogenized at 320 °C for 18 h + extruded at 350 °C [113] |
Mg-0.5Zn-0.4Zr-2.5Nd | - | 212.9 | - | As-Cast [113] |
Mg-0.5Zn-0.4Zr-2.5Ce | - | 276 | - | Cast + homogenized at 320 °C for 18 h + extruded at 350 °C [113] |
Mg-0.5Zn-0.4Zr-2.5Nd-2.5Y | - | 244.8 | - | As-Cast [113] |
Mg-0.5Zn-0.4Zr-2.5Ce | - | 258 | - | Cast + homogenized at 320 °C for 18 h + extruded at 350 °C [113] |
Mg-8.8Gd-3.1Y-0.6Zn-0.5Zr | 170 | 230 | 7.0 | As-Cast [98] |
Mg-8.8Gd-3.1Y-0.6Zn-0.5Zr | 208 | 297 | 17.6 | Cast + Extruded at 250 °C [98] |
Mg-8.8Gd-3.1Y-0.6Zn-0.5Zr | 310 | 395 | 13.7 | Cast + Extruded at 250 °C + Aged at 200 °C/40 h [98] |
Mg-8.8Gd-3.1Y-0.6Zn-0.5Zr | 375 | 430 | 9.5 | Cast + Extruded at 250 °C + Aged at 200 °C/63 h [98] |
Mg-8.8Gd-3.1Y-0.6Zn-0.5Zr | 340 | 422 | 12.9 | Cast + Extruded at 250 °C + Aged at 200 °C/100 h [98] |
Mg-8.8Gd-3.1Y-0.6Zn-0.5Zr | 320 | 407 | 14.3 | Cast + Extruded at 250 °C + Aged at 200 °C/126 h [98] |
Mg-0.7Zn-0.2Zr-0.8Ce | 117 | 232 | 18.84 | Cast + homogenized at 450 °C for 12 h + water quenched+ Rolled at 400 °C + Annealed at 400 °C for 1 h [99] |
Mg-0.9Zn-0.2Zr-0.7La | 109 | 241 | 24.41 | |
Mg-0.6Zn-0.3Zr-0.6Nd | 99 | 237 | 28.02 | |
Mg-0.7Zn-0.2Zr-0.7Gd | 78 | 229 | 30.34 | |
Mg-0.8Zn-0.3Zr-MM (MM = 0.6Ce + 0.2La + 0.06Nd) | 112 | 242 | 23.58 | |
Mg-1Zn-1Mn-4Y | 135 | 175 | 6 | As-Cast [100] |
Mg-1Zn-1Mn-4Y | 123 | 165 | 10 | Cast + Heat Treated at 250 °C/42 h (T5) [100] |
Mg-1Zn-1Mn-4Ce | 90 | 120 | 5 | As-Cast [100] |
Mg-1Zn-1Mn-4Ce | 112 | 170 | 9 | Cast + Heat Treated at 275 °C/36 h (T5) [100] |
Mg-1Zn-0.6Zr-1Ce | 199 ± 3.6 | 283 ± 1.6 | 6.3 | Cast + hot rolled at 400 °C [25] |
Mg-1Zn-0.6Zr-1Ce | 192.5 ± 2.5 | 274 ± 2.5 | 7.9 | Cast + hot rolled at 400 °C and annealed for 1 h at 250 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Ce | 176 ± 2.7 | 276.4 ± 3.3 | 12.8 | Cast + hot rolled at 400 °C and annealed for 1 h at 300 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Ce | 169.6 ± 1.5 | 268 ± 2.4 | 29 | Cast + hot rolled at 400 °C and annealed for 1 h at 350 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Ce | 155 ± 1.7 | 263.6 ± 2.5 | 32.6 | Cast + hot rolled at 400 °C and annealed for 1 h at 400 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Ce | 135.7 ± 0.4 | 264 ± 2.9 | 31.8 | Cast + hot rolled at 400 °C and annealed for 1 h at 450 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Gd | 194.7 ± 3.8 | 236.4 ± 4.1 | 10 | Cast + hot rolled at 400 °C |
Mg-1Zn-0.6Zr-1Gd | 193.8 ± 4.5 | 238.6 ± 5.9 | 4.3 | Cast + hot rolled at 400 °C and annealed for 1 h at 250 °C+ Water Quenched [25] |
Mg-1Zn-0.6Zr-1Gd | 173.4 ± 2.7 | 236.4 ± 3.6 | 15.7 | Cast + hot rolled at 400 °C and annealed for 1 h at 300 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Gd | 153.7 ± 4.4 | 277.8 ± 3.2 | 37.2 | Cast + hot rolled at 400 °C and annealed for 1 h at 350 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Gd | 124.7 ± 7 | 276.5 ± 5 | 38.8 | Cast + hot rolled at 400 °C and annealed for 1 h at 400 °C + Water Quenched [25] |
Mg-1Zn-0.6Zr-1Gd | 101.9 ± 1.7 | 249.5 ± 2.6 | 30 | Cast + hot rolled at 400 °C and annealed for 1 h at 450 °C + Water Quenched [25] |
Mg-1.3Zn-0.2Ce-0.5Zr | 305 ± 3 | 313 ± 3 | 7.5 ± 0.1 | Cast + Extruded at 300 °C at a speed of 1 m/min [101] |
Mg-1.3Zn-0.2Ce-0.5Zr | 204 ± 1 | 257 ± 1 | 9.3 ± 0.1 | Cast + Extruded at 300 °C at a speed of 10 m/min [101] |
Mg-1.3Zn-0.2Ce-0.5Zr | 209 ± 2 | 259 ± 2 | 9.2 ± 0.1 | Cast + Extruded at 300 °C at a speed of 20 m/min [101] |
Mg-1Zn-0.8RE-0.4Zr | 296 | 299 | 18 | Cast + Extruded at 300 °C at 1 m/min + Annealed at 400 °C/1 h [102] |
184 * | 434 * | 9 * | ||
Mg-1Zn-0.8RE-0.4Zr | 221 | 260 | 21 | Cast + Extruded at 300 °C at 5 m/min + Annealed at 400 °C/1 h [102] |
156 * | 381 * | 10 * | ||
Mg-1Zn-0.8RE-0.4Zr | 201 | 251 | 19 | Cast + Extruded at 300 °C at 10 m/min + Annealed at 400 °C/1 h [102] |
142 * | 369 * | 11* | ||
Mg-2Zn-0.8RE-0.6Zr | 308 | 311 | 19 | Cast + Extruded at 300 °C at 1 m/min + Annealed at 400 °C/1 h [102] |
201 * | 462 * | 9 * | ||
Mg-2Zn-0.8RE-0.6Zr | 246 | 275 | 20 | Cast + Extruded at 300 °C at 5 m/min + Annealed at 400 °C/1 h [102] |
162 * | 435 * | 10 * | ||
Mg-2Zn-0.8RE-0.6Zr | 225 | 264 | 19 | Cast + Extruded at 300 °C at 10 m/min + Annealed at 400 °C/1 h [102] |
154 * | 412 * | 10 * | ||
Mg-2.8Zn-0.8RE-0.6Zr | 260 | 290 | 19 | Cast + Extruded at 300 °C at 1m/min + Annealed at 400 °C/1 h [102] |
185 * | 450 * | 9.5 * | ||
Mg-2.8Zn-0.8RE-0.6Zr | 243 | 279 | 21 | Cast + Extruded at 300 °C at 5 m/min + Annealed at 400 °C/1 h [102] |
169 * | 447 * | 10 * | ||
Mg-2.8Zn-0.8RE-0.6Zr | 218 | 267 | 20 | Cast + Extruded at 300 °C at 10 m/min + Annealed at 400 °C/1 h [102] |
156 * | 420 * | 10 * | ||
Mg-1.4Zn-0.1Zr-0.1RE (RE: 49.1 Ce, 35.9 La, 11.0 Nd, 4.0 Pr) | 200 ± 7 | 250 ± 5 | 15.3 ± 0.3 | Die Cast + Extruded at 300 °C + Annealed at 300 °C for 30 min [103] |
150 ± 6 * | 441 ± 3 * | 12.0 ± 0.2 * | ||
Mg-1.4Zn-0.1Zr-0.1RE-0.4Ca (RE: 49.1 Ce, 35.9 La, 11.0 Nd, 4.0 Pr) | 171 ± 2 | 243 ± 1 | 14.6 ± 0.0 | |
148 ± 1 * | 432 ± 6 * | 11.7 ± 0.2 * | ||
Mg-1.4Zn-0.1Zr-0.1RE-0.8Ca (RE: 49.1 Ce, 35.9 La, 11.0 Nd, 4.0 Pr) | 174 ± 1 | 243 ± 1 | 15.1 ± 1.1 | |
149 ± 2 * | 410 ± 4 * | 22.0 ± 5.0 * | ||
Mg-1.5Zn-0.6Zr-0.5Er | 261 | 300 | 27 | Cast + homogenized for 12 h at 410 °C + Extruded at 350 °C [104] |
Mg-1.5Zn-0.6Zr-0.5Er | 261 | 290 | 27 | Cast + homogenized for 12 h at 410 °C + Extruded at 420 °C [105] |
Mg-1.5Zn-0.6Zr-1Er | 205 | 385 | 25 | Cast + homogenized for 12 h at 410 °C + Extruded at 350 °C [104] |
Mg-1.5Zn-0.6Zr-1Er | 285 | 305 | 24 | Cast + homogenized for 12 h at 410 °C + Extruded at 420 °C [105] |
Mg-1.5Zn-0.6Zr-2Er | 195 | 340 | 31 | Cast + homogenized for 12 h at 410 °C + Extruded at 350 °C [104] |
Mg-1.5Zn-0.6Zr-2Er | 255 | 275 | 30 | Cast + homogenized for 12 h at 410 °C + Extruded at 420 °C [105] |
Mg-1.5Zn-0.6Zr-4Er | 230 | 270 | 37 | Cast + homogenized for 12 h at 410 °C + Extruded at 350 °C [104] |
Mg-1.5Zn-0.6Zr-4Er | 230 | 260 | 37 | Cast + homogenized for 12 h at 410 °C + Extruded at 420 °C [105] |
Mg-9Gd-1Er-1.6Zn-0.6Zr | 220 | 302 | 19 | Cast + annealed at 400 °C for 24 h + Extruded at 400 °C [114] |
Mg-9Gd-1Er-1.6Zn-0.6Zr | 269 | 344 | 10 | Cast + annealed at 525 °C for 4 h + Extruded at 400 °C [114] |
Mg-9Gd-2Er-1.6Zn-0.6Zr | 221 | 306 | 17.8 | Cast + annealed at 400 °C for 24 h + Extruded at 400 °C [114] |
Mg-9Gd-2Er-1.6Zn-0.6Zr | 262 | 342 | 11.7 | Cast + annealed at 525 °C for 4 h + Extruded at 400 °C [114] |
Mg-9Gd-3Er-1.6Zn-0.6Zr | 223 | 308 | 14.6 | Cast + annealed at 400 °C for 24 h + Extruded at 400 °C [114] |
Mg-9Gd-3Er-1.6Zn-0.6Zr | 263 | 339 | 10.4 | Cast + annealed at 525 °C for 4 h + Extruded at 400 °C [114] |
Mg-9Gd-4Er-1.6Zn-0.6Zr | 235 | 321 | 14.2 | Cast + annealed at 400 °C for 24 h + Extruded at 400 °C [114] |
Mg-9Gd-4Er-1.6Zn-0.6Zr | 261 | 333 | 8.4 | Cast + annealed at 525 °C for 4 h + Extruded at 400 °C [114] |
Mg-2Zn-0.3Ca-0.1Ce | 131 ± 12.3 | 222 ± 7.0 | 23.9 ± 0.27 | Cast + homogenized for 3 h at 300 °C + 24 h at 400 °C + hot rolled at 400 °C + annealed at 400 °C for 30 min [50] |
Mg-4Zn-0.3Ca-0.1Ce | 119 ± 2.1 | 240 ± 1.5 | 18.3 ± 1.30 | |
Mg-5Zn-1Nd-0.6Zr | 100 | 200 | 7.5 | As-Cast [109] |
Mg-5Zn-2Nd-0.6Zr | 90 | 135 | 3 | |
Mg-5Zn-2Nd-0.5Y-0.6Zr | 95 | 205 | 9.5 | |
Mg-5Zn-2Nd-1Y-0.6Zr | 105 | 220 | 12 | |
Mg-5.5Zn-0.6Zr-0.2Gd | 227 | 307 | 25.3 | Cast + homogenized at 300 °C for 20 h and 400 °C for 12 h + high strain rate rolled at 400 °C [106] |
Mg-5.5Zn-0.6Zr-0.5Gd | 235 | 318 | 23.2 | |
Mg-5.5Zn-0.6Zr-0.8Gd | 242 | 327 | 22 | |
Mg-6Zn-0.5Zr-1Ce | 293 | 337 | 26.9 | Cast + homogenized at 440 °C for 8 h + water quenched+ extruded at 250 °C at 0.3 mm/s [110] |
Mg-6Zn-0.5Zr-1Ce | 286 | 333 | 25.4 | Cast + homogenized at 440 °C for 8 h + water quenched+ extruded at 250 °C at 1.0 mm/s [110] |
Mg-6Zn-0.5Zr-1Ce | 247 | 311 | 22.6 | Cast + homogenized at 440 °C for 8 h + water quenched+ extruded at 250 °C at 3 mm/s [110] |
Mg-6.3Zn-2Zr-1Y | 127 | 267 | 12.1 | Cast + Forged [111] |
Mg-6.3Zn-2Zr-1Y | 84 | 244 | 13.2 | Cast + Forged +Solid solution for 2.5 h at 500 °C (T4) [111] |
Mg-6.3Zn-2Zr-1Y | 124 | 259 | 10.8 | Cast + Forged + Solid solution for 2.5 h at 500 °C + aged for 15 h at 180 °C (T6) [111] |
Mg-6.3Zn-2Zr-1Y | 129 | 309 | 18.7 | Cast + Forged + aged for15 h at 180 °C (T5) [111] |
Mg-7.5Zn-5Al-0.123RE | 100 | 175 | 2.2 | As-Cast [107] |
Mg-7.5Zn-5Al-0.123RE | 100 | 160 | 1.5 | Cast + heat treated at 350 °C for 96 h + water quenched + aged at 175 °C for 16 h [107] |
Mg-7.6Zn-5Al-0.763RE | 104 | 198 | 2.8 | As-Cast [107] |
Mg-7.6Zn-5Al-0.763RE | 120 | 232 | 3.4 | Cast + heat treated at 350 °C for 96 h + water quenched + aged at 175 °C for 16 h [107] |
Mg-7Zn-5Al-1.753RE | 100 | 186 | 1.9 | As-Cast [107] |
Mg-7Zn-5Al-1.753RE | 120 | 240 | 5.2 | Cast + heat treated at 350 °C for 96 h + water quenched + aged at 175 °C for 16 h [107] |
Mg-8Zn-4Al-0.5RE | 110 | 145 | 4.5 | As-Cast [112] |
Mg-8Zn-4Al-1.0RE | 118 | 158 | 4.2 | |
Mg-8Zn-4Al-1.5RE | 123 | 165 | 4 | |
Mg-12.3Zn-5.8Y-1.4Al | 191 | 100 | 6.9 | As-Cast [108] |
Mg-12.3Zn-5.8Y-1.4Al | 203 | 106 | 4.9 | Cast + Solution treated at 335 °C for 12 h + quenched in water + Aged at 200 °C [108] |
4.6. Mg-Sn-RE Higher Alloy System
Alloy (wt.%) | TensileYield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-4Zn-5Sn-1Ce | 155 | 275 | 27.5 | Cast + homogenized at 420 °C for 24 h + Extruded at 250 °C [115] |
Mg-4Zn-5Sn-1Ce | 190 | 200 | 30 | Cast + homogenized at 420 °C for 24 h+ Extruded at 250 °C + solutionized at 450 °C for 1 h + aged at 200 °C (T6) [115] |
4.7. Other Higher Alloy Systems
Alloy (wt.%) | Tensile Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Tensile Ductility (%) | Remarks |
---|---|---|---|---|
Processing condition and Reference | ||||
Mg-1.8Mn-0.1Er-0.05Al | 224 | 244 | 4 | Cast + homogenized at 450 °C for 4 h + Extruded at 450 °C + Annealed at 390 °C for 1 h [56] |
Mg-1.8Mn-0.4Er-0.2Al | 224 | 245 | 8 | |
Mg-1.8Mn-0.7Er-0.34Al | 226 | 250 | 19 | |
Mg-10Er-2Cu-V | 370 | 430 | 11 | Cast + homogenized at 450 °C for 24 h + Extruded at 430 °C [57] |
5. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Mordike, B.L.; Ebert, T. Magnesium: Properties—Applications—Potential. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Somekawa, H.; Mukai, T. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy. Scripta Mater. 2005, 53, 541–545. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.P.; Zhang, J.X.; Lorimer, G.W.; Robson, J. Review on research and development of magnesium alloys. Acta Metall. Sinica (Engl. Lett.) 2008, 21, 313–328. [Google Scholar] [CrossRef]
- Huang, Y.; Gan, W.; Kainer, K.U.; Hort, N. Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys. J. Magnes. Alloys 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Stanford, N.; Atwell, D.; Beer, A.; Davies, C.; Barnett, M.R. Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater. 2008, 59, 772–775. [Google Scholar] [CrossRef]
- Chia, T.L.; Easton, M.A.; Zhu, S.M.; Gibson, M.A.; Birbilis, N.; Nie, J.F. The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys. Intermetallics 2009, 17, 481–490. [Google Scholar] [CrossRef]
- Gao, L.; Chen, R.S.; Han, E.H. Solid solution strengthening behaviors in binary Mg–Y single phase alloys. J. Alloy. Compd. 2009, 472, 234–240. [Google Scholar] [CrossRef]
- Hirsch, J.; Al-Samman, T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013, 61, 818–843. [Google Scholar] [CrossRef]
- Luo, A.A.; Sachdev, A.K. 12—Applications of magnesium alloys in automotive engineering. In Advances in Wrought Magnesium Alloys; Bettles, C., Barnett, M., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 393–426. [Google Scholar]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.; Gu, X.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R. Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Hort, N.; Huang, Y.; Fechner, D.; Störmer, M.; Blawert, C.; Witte, F.; Vogt, C.; Drücker, H.; Willumeit, R.; Kainer, K.U.; et al. Magnesium alloys as implant materials—Principles of property design for Mg–RE alloys. Acta Biomater. 2010, 6, 1714–1725. [Google Scholar] [CrossRef] [PubMed]
- Rokhlin, L.L. Structure and properties of alloys of the Mg-RE system. Met. Sci. Heat Treat. 2006, 48, 487–490. [Google Scholar] [CrossRef]
- Zhao, H.D.; Qin, G.W.; Ren, Y.P.; Pei, W.L.; Chen, D.; Guo, Y. The maximum solubility of Y in α-Mg and composition ranges of Mg24Y5−x and Mg2Y1−x intermetallic phases in Mg–Y binary system. J. Alloy. Compd. 2011, 509, 627–631. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009, 30, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Zhang, Z.; Jin, L.; Dong, J.; Chen, B.; Ding, W. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy. Mater. Des. 2014, 56, 966–974. [Google Scholar] [CrossRef]
- Essadiqi, E.; Shehata, M.T.; Javaid, A.; Shen, G.; Aljarrah, M.; Verma, R.; Mishra, R. In Alloying and Process Design of Mg Sheet; CANMET Materials: Ottawa, ON, Canada, 2011. [Google Scholar]
- Sandlöbes, S.; Zaefferer, S.; Schestakow, I.; Yi, S.; Gonzalez-Martinez, R. On the role of non-basal deformation mechanisms for the ductility of mg and Mg–Y alloys. Acta Mater. 2011, 59, 429–439. [Google Scholar] [CrossRef]
- Wu, B.L.; Zhao, Y.H.; Du, X.H.; Zhang, Y.D.; Wagner, F.; Esling, C. Ductility enhancement of extruded magnesium via yttrium addition. Mater. Sci. Eng. A 2010, 527, 4334–4340. [Google Scholar] [CrossRef]
- Sugamata, M.; Hanawa, S.; Kaneko, J. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Mater. Sci. Eng. A 1997, 226–228, 861–866. [Google Scholar] [CrossRef]
- Zhang, B.; Nagasekhar, A.V.; Tao, X.; Ouyang, Y.; Cáceres, C.H.; Easton, M. Strengthening by the percolating intergranular eutectic in an hpdc Mg–Ce alloy. Mater. Sci. Eng. A 2014, 599, 204–211. [Google Scholar] [CrossRef]
- Mishra, R.K.; Gupta, A.K.; Rao, P.R.; Sachdev, A.K.; Kumar, A.M.; Luo, A.A. Influence of cerium on the texture and ductility of magnesium extrusions. Scripta Mater. 2008, 59, 562–565. [Google Scholar] [CrossRef]
- Chino, Y.; Kado, M.; Mabuchi, M. Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt%(0.035 at%)Ce. Mater. Sci. Eng. A 2008, 494, 343–349. [Google Scholar] [CrossRef]
- Luo, A.A.; Wu, W.; Mishra, R.K.; Jin, L.; Sachdev, A.K.; Ding, W. Microstructure and mechanical properties of extruded magnesium-aluminum-cerium alloy tubes. Metall. Mater. Trans. A 2010, 41, 2662–2674. [Google Scholar] [CrossRef]
- Basu, I.; Al-Samman, T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 2014, 67, 116–133. [Google Scholar] [CrossRef]
- Nayeb-Hashemi, A.A. Phase Diagrams of Binary Magnesium Alloys; ASM International: Metals Park, OH, USA, 1998. [Google Scholar]
- Gao, L.; Chen, R.S.; Han, E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of mg alloys. J. Alloy. Compd. 2009, 481, 379–384. [Google Scholar] [CrossRef]
- Peng, Q.; Wu, Y.; Fang, D.; Meng, J.; Wang, L. Microstructures and properties of melt-spun and as-cast Mg-20Gd binary alloy. J. Rare Earths 2006, 24, 466–470. [Google Scholar] [CrossRef]
- Stanford, N.; Atwell, D.; Barnett, M.R. The effect of gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 2010, 58, 6773–6783. [Google Scholar] [CrossRef]
- Stanford, N.; Barnett, M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A 2008, 496, 399–408. [Google Scholar] [CrossRef]
- Rokhlin, L.L. Magnesium Alloys Containing Rare Earth Metals; Taylor & Francis: New York, NY, USA, 2003. [Google Scholar]
- Wu, B.L.; Wan, G.; Du, X.H.; Zhang, Y.D.; Wagner, F.; Esling, C. The quasi-static mechanical properties of extruded binary Mg–Er alloys. Mater. Sci. Eng. A 2013, 573, 205–214. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, W.; Cui, J. Study on the deformation behavior of Mg-3.6%Er magnesium alloy. J. Rare Earths 2007, 25, 744–748. [Google Scholar]
- Yan, J.; Sun, Y.; Xue, F.; Xue, S.; Tao, W. Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Mater. Sci. Eng. A 2008, 476, 366–371. [Google Scholar] [CrossRef]
- Seitz, J.M.; Eifler, R.; Stahl, J.; Kietzmann, M.; Bach, F.W. Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. Acta Biomater. 2012, 8, 3852–3864. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.; Li, Y.; Zang, S.; Zhang, J.; Ma, Y.; Hao, Y. Microstructure, mechanical and corrosion properties of Mg–2Dy–xZn (x = 0, 0.1, 0.5 and 1 at.%) alloys. J. Magnes. Alloy. 2014, 2, 64–71. [Google Scholar] [CrossRef]
- Yang, L.; Huang, Y.; Peng, Q.; Feyerabend, F.; Kainer, K.U.; Willumeit, R.; Hort, N. Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Mater. Sci. Eng. B 2011, 176, 1827–1834. [Google Scholar] [CrossRef]
- Yang, L.; Huang, Y.; Feyerabend, F.; Willumeit, R.; Kainer, K.U.; Hort, N. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys. J. Mech. Behav. Biomed. Mater. 2012, 13, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, Q.; Jing, X.; Zhang, X. Microstructure and mechanical properties of Mg-10Y-2.5Sm alloy. J. Rare Earths 2010, 28 (Suppl. 1), 375–377. [Google Scholar]
- Gavras, S.; Easton, M.A.; Gibson, M.A.; Zhu, S.; Nie, J.-F. Microstructure and property evaluation of high-pressure die-cast Mg–La–rare earth (Nd, Y or Gd) alloys. J. Alloy. Compd. 2014, 597, 21–29. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Du, W.; Liu, K.; Li, S. Microstructure evolutions of Mg-8Gd-2Er (wt.%) alloy during isothermal ageing at 200 °C. J. Rare Earths 2012, 30, 1168–1171. [Google Scholar] [CrossRef]
- Luo, A.A.; Mishra, R.K.; Sachdev, A.K. Development of high ductility magnesium-zinc-cerium extrusion alloys. In Proceedings of the 2010 TMS Annual Meeting & Exhibition, Seattle, WA, USA, 14–18 February 2010; pp. 313–318.
- Le, Q.-C.; Zhang, Z.-Q.; Shao, Z.-W.; Cui, J.-Z.; Xie, Y. Microstructures and mechanical properties of Mg-2%Zn-0.4%Re alloys. Trans. Nonferrous Metals Soc. China 2010, 20, s352–s356. [Google Scholar] [CrossRef]
- Wu, D.; Chen, R.S.; Han, E.H. Excellent room-temperature ductility and formability of rolled Mg–Gd–Zn alloy sheets. J. Alloy. Compd. 2011, 509, 2856–2863. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Wang, X.-D.; Wang, Q.-F.; Du, W.-B. Effects of ultrasonic treatment on microstructure and mechanical properties of Mg-5Zn-2Er alloy. Trans. Nonferrous Metals Soc. China 2011, 21, 773–777. [Google Scholar] [CrossRef]
- Zhao, X.-F.; Li, S.-B.; Wang, Q.-F.; Du, W.-B.; Liu, K. Effects of heat treatment on microstructure and mechanical properties of Mg–5Zn–0.63Er alloy. Trans. Nonferrous Metals Soc. China 2013, 23, 59–65. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, K.; Wang, Z.; Li, S.; Du, W. Microstructure, texture and mechanical properties of as-extruded Mg–Zn–Er alloys containing W-phase. J. Alloy. Compd. 2014, 602, 32–39. [Google Scholar] [CrossRef]
- Srinivasan, A.; Huang, Y.; Mendis, C.L.; Blawert, C.; Kainer, K.U.; Hort, N. Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys. Mater. Sci. Eng. A 2014, 595, 224–234. [Google Scholar] [CrossRef]
- Singh, A.; Somekawa, H.; Mukai, T. High temperature processing of Mg–Zn–Y alloys containing quasicrystal phase for high strength. Mater. Sci. Eng. A 2011, 528, 6647–6651. [Google Scholar] [CrossRef]
- Langelier, B.; Nasiri, A.M.; Lee, S.Y.; Gharghouri, M.A.; Esmaeili, S. Improving microstructure and ductility in the Mg–Zn alloy system by combinational Ce–Ca microalloying. Mater. Sci. Eng. A 2015, 620, 76–84. [Google Scholar] [CrossRef]
- Li, H.; Du, W.; Li, S.; Wang, Z. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg–Zn–Er alloys. Mater. Des. 2012, 35, 259–265. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Q.-F.; Du, W.-B.; Wang, Z.-H.; Li, S.-B. Microstructure and mechanical properties of extruded Mg–6Zn–xEr alloys. Trans. Nonferrous Metals Soc. China 2013, 23, 2863–2873. [Google Scholar] [CrossRef]
- Peng, Q.; Dong, H.; Wu, Y.; Wang, L. Age hardening and mechanical properties of Mg–Gd–Er alloy. J. Alloy. Compd. 2008, 456, 395–399. [Google Scholar] [CrossRef]
- Zhao, H.-D.; Qin, G.-W.; Ren, Y.-P.; Pei, W.-L.; Chen, D.; Guo, Y. Microstructure and tensile properties of as-extruded Mg-Sn-Y alloys. Trans. Nonferrous Metals Soc. China 2010, 20, s493–s497. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Xiao, S.; Zhang, X.; Tang, Y.; Wei, S.; Zhao, Y. Study on microstructure and mechanical properties of as-cast Mg-Sn-Nd alloys. J. Rare Earths 2010, 28, 790–793. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, F.; Liu, M.; Pan, F. Microstructure and mechanical properties of Mg–1.8%Mn alloy modified by single Er and composite Er/Al microalloying. Mater. Sci. Eng. A 2013, 576, 185–191. [Google Scholar] [CrossRef]
- Du, X.H.; Duan, G.S.; Hong, M.; Wang, D.P.; Wu, B.L.; Zhang, Y.D.; Esling, C. Effect of V on the microstructure and mechanical properties of Mg–10Er–2Cu alloy with a long period stacking ordered structure. Mater. Lett. 2014, 122, 312–314. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, G.; Mao, L.; Niu, J.; Ding, W. Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Mater. Lett. 2012, 66, 209–211. [Google Scholar] [CrossRef]
- Mabuchi, M.; Chino, Y.; Iwasaki, H. Tensile properties at room temperature to 823 K of Mg-4Y-3RE alloy. Mater. Trans. 2002, 43, 2063–2068. [Google Scholar] [CrossRef]
- Su, Z.; Liu, C.; Wan, Y. Microstructures and mechanical properties of high performance Mg–4Y–2.4Nd–0.2Zn–0.4Zr alloy. Mater. Des. 2013, 45, 466–472. [Google Scholar] [CrossRef]
- Mukai, T.; Mohri, T.; Mabuchi, M.; Nakamura, M.; Ishikawa, K.; Higashi, K. Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading. Scripta Mater. 1998, 39, 1249–1253. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Yuan, W.; Mishra, R.S.; DeLorme, R.; Davis, B.; Howell, R.A.; Cho, K. A study on the combined effect of forging and aging in Mg–Y–RE alloy. Mater. Sci. Eng. A 2011, 530, 28–35. [Google Scholar] [CrossRef]
- Rzychoń, T.; Kiełbus, A.; Cwajna, J.; Mizera, J. Microstructural stability and creep properties of die casting Mg–4Al–4RE magnesium alloy. Mater. Charact. 2009, 60, 1107–1113. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, S.; Easton, M.A.; Zhang, M.; Qiu, D.; Wu, G.; Liu, W.; Ding, W. Heat treatment, microstructure and mechanical properties of a Mg–Gd–Y alloy grain-refined by Al additions. Mater. Sci. Eng. A 2013, 576, 298–305. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Liu, S.-J.; Leng, Z.; Zhang, M.-L.; Meng, J.; Wu, R.-Z. Structure stability and mechanical properties of high-pressure die-cast Mg–Al–Ce–Y-based alloy. Trans. Nonferrous Metals Soc. China 2012, 22, 262–267. [Google Scholar] [CrossRef]
- Zhang, J.; Leng, Z.; Liu, S.; Zhang, M.; Meng, J.; Wu, R. Structure stability and mechanical properties of Mg–Al-based alloy modified with Y-rich and Ce-rich misch metals. J. Alloys Compd. 2011, 509, L187–L193. [Google Scholar] [CrossRef]
- Rzychoń, T.; Kiełbus, A.; Lityńska-Dobrzyńska, L. Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy. Mater. Charact. 2013, 83, 21–34. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, P.; Liu, K.; Fang, D.; Tang, D.; Meng, J. Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg–Al–RE alloys. Mater. Des. 2009, 30, 2372–2378. [Google Scholar] [CrossRef]
- Zhang, J.; Leng, Z.; Zhang, M.; Meng, J.; Wu, R. Effect of ce on microstructure, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al-based alloy. J. Alloy. Compd. 2011, 509, 1069–1078. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Meng, J.; Wu, R.; Tang, D. Microstructures and mechanical properties of heat-resistant high-pressure die-cast Mg–4Al–xLa–0.3Mn (x = 1, 2, 4, 6) alloys. Mater. Sci. Eng. A 2010, 527, 2527–2537. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Fang, D.; Qiu, X.; Yu, P.; Tang, D.; Meng, J. Microstructures, mechanical properties and corrosion behavior of high-pressure die-cast Mg–4Al–0.4Mn–xPr (x = 1, 2, 4, 6) alloys. J. Alloy. Compd. 2009, 480, 810–819. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Qiu, X.; Zhang, D.; Tian, Z.; Niu, X.; Tang, D.; Meng, J. Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg–4Al-based alloy. J. Alloy. Compd. 2008, 464, 556–564. [Google Scholar] [CrossRef]
- Wang, J.; Liao, R.; Wang, L.; Wu, Y.; Cao, Z.; Wang, L. Investigations of the properties of Mg–5Al–0.3Mn–xCe (x = 0–3 wt.%) alloys. J. Alloy. Compd. 2009, 477, 341–345. [Google Scholar] [CrossRef]
- Chen, Y.; Hao, L.; Ruiyu, Y.; Liu, G.; Xia, T. Effects of Nd on microstructure and mechanical properties of Mg–Al–Ca alloy. Mater. Sci. Technol. 2013, 30, 495–500. [Google Scholar] [CrossRef]
- Wu, G.; Fan, Y.; Gao, H.; Zhai, C.; Zhu, Y.P. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng. A 2005, 408, 255–263. [Google Scholar] [CrossRef]
- Krause, A.; von der Höh, N.; Bormann, D.; Krause, C.; Bach, F.-W.; Windhagen, H.; Meyer-Lindenberg, A. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J. Mater. Sci. 2010, 45, 624–632. [Google Scholar] [CrossRef]
- Zeng, R.; Qi, W.; Zhang, F.; Cui, H.; Zheng, Y. In vitro corrosion of Mg–1.21Li–1.12Ca–1Y alloy. Prog. Nat. Sci. Mater. Int. 2014, 24, 492–499. [Google Scholar] [CrossRef]
- Tao, W.; Zhang, M.; Niu, Z.; Liu, B. Influence of rare earth elements on microstructure and mechanical properties of Mg-Li alloys. J. Rare Earths 2006, 24, 797–800. [Google Scholar] [CrossRef]
- Zhou, W.R.; Zheng, Y.F.; Leeflang, M.A.; Zhou, J. Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg–Li–(Al)–(RE) alloys for future cardiovascular stent application. Acta Biomater. 2013, 9, 8488–8498. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, M.; Wu, R. Microstructure and properties of Mg–8Li–1Al–1Ce alloy. Mater. Lett. 2008, 62, 1846–1848. [Google Scholar] [CrossRef]
- Wu, R.Z.; Qu, Z.K.; Zhang, M.L. Reviews on the influences of alloying elements on the microstructure and mechanical properties of Mg-Li based alloys. Rev. Adv. Mater. Sci. 2010, 24, 14–34. [Google Scholar]
- Wang, J.; Nie, J.-J.; Wang, R.; Xu, Y.-D.; Zhu, X.-R.; Ling, G.-P. Effect of Y on age hardening response and mechanical properties of Mg-xY–1.5LPC−0.4Zr alloys. Trans. Nonferrous Metals Soc. China 2012, 22, 1549–1555. [Google Scholar] [CrossRef]
- Mohri, T.; Mabuchi, M.; Saito, N.; Nakamura, M. Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment. Mater. Sci. Eng. A 1998, 257, 287–294. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Xue, Y.-J.; Wang, Z.-Z. Effect of heat treatment on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Mg-2.7Nd-0.2Zn-0.4Zr alloy. Trans. Nonferrous Metals Soc. China 2012, 22, 2343–2350. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, G.; Wang, Z. Mechanical properties and biocorrosion resistance of Mg-Nd-Zn-Zr alloy improved by cyclic extrusion and compression. Mater. Lett. 2012, 74, 128–131. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, G.; Niu, J.; Fu, P.; Ding, W. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg–Nd–Zn–Zr alloy with different extrusion ratios. J. Mech. Behav. Biomed. Mater. 2012, 9, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.; Yuan, G.; Xue, Y. Improvement of mechanical properties and corrosion resistance of biodegradable Mg–Nd–Zn–Zr alloys by double extrusion. Mater. Sci. Eng. B 2012, 177, 1113–1119. [Google Scholar] [CrossRef]
- Kielbus, A.; Rzychon, T. Mechanical and creep properties of Mg-4Y-3RE and Mg-3Nd-1Gd magnesium alloy. Procedia Eng. 2011, 10, 1835–1840. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Dong, J.; Zeng, X.Q.; Ding, W.J. Effect of thermo-mechanical treatment on the microstructure and mechanical properties of a Mg–6Gd–2Nd–0.5Zr alloy. Mater. Sci. Eng. A 2007, 454–455, 314–321. [Google Scholar] [CrossRef]
- Xiao, B.L.; Yang, Q.; Yang, J.; Wang, W.G.; Xie, G.M.; Ma, Z.Y. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. J. Alloy. Compd. 2011, 509, 2879–2884. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.-T.; Chai, F.; Zhang, W. Microstructures and mechanical properties of WE43 magnesium alloy prepared by friction stir processing. Rare Met. 2014, 1–6. [Google Scholar]
- He, L.-Q.; Li, Y.-J.; Li, X.-G.; Ma, M.-L.; Zhang, K.; Wang, X.-W.; Yan, J.-M.; Lin, H.-T. Microstructure and properties of WE93 alloy. Trans. Nonferrous Metals Soc. China 2011, 21, 790–794. [Google Scholar] [CrossRef]
- Wang, R.; Dong, J.; Fan, L.-K.; Zhang, P.; Ding, W.-J. Microstructure and mechanical properties of rolled Mg-12Gd-3Y-0.4Zr alloy sheets. Trans. Nonferrous Metals Soc. China 2008, 18, s189–s193. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, M.Y.; Xu, S.W.; Wu, K.; Wang, E.D.; Kamado, S.; Wang, G.J.; Lv, X.Y. Microstructure and mechanical properties of rolled sheets of Mg–Gd–Y–Zn–Zr alloy: As-cast versus as-homogenized. J. Alloy. Compd. 2012, 528, 40–44. [Google Scholar] [CrossRef]
- Xu, C.; Xu, S.W.; Zheng, M.Y.; Wu, K.; Wang, E.D.; Kamado, S.; Wang, G.J.; Lv, X.Y. Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. J. Alloy. Compd. 2012, 524, 46–52. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, M.Y.; Xu, S.W.; Wu, K.; Wang, E.D.; Fan, G.H.; Kamado, S.; Liu, X.D.; Wang, G.J.; Lv, X.Y. Microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets processed by combined processes of extrusion, hot rolling and ageing. Mater. Sci. Eng. A 2013, 559, 844–851. [Google Scholar] [CrossRef]
- Freeney, T.A.; Mishra, R.S. Effect of friction stir processing on microstructure and mechanical properties of a cast-magnesium–rare earth alloy. Metall. Mat. Trans. A 2010, 41, 73–84. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.P.; Guo, Y.C.; Liu, T.; Xia, F.; Zeng, Z.W.; Liang, M.X. Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy. Mater. Sci. Eng. A 2007, 454–455, 274–280. [Google Scholar] [CrossRef]
- Al-Samman, T.; Li, X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng. A 2011, 528, 3809–3822. [Google Scholar] [CrossRef]
- Stulikova, I.; Smola, B. Mechanical properties and phase composition of potential biodegradable Mg–Zn–Mn–base alloys with addition of rare earth elements. Mater. Charact. 2010, 61, 952–958. [Google Scholar] [CrossRef]
- Dobroň, P.; Chmelik, F.; Parfenenko, K.; Letzig, D.; Bohlen, J. On the effect of the extrusion speed on microstructure and plastic deformation of ZE10 and ZEK100 magnesium alloys—An acoustic emission study. Acta Phys. Polonica A 2012, 122, 593. [Google Scholar]
- García, E.M. Influence of alloying elements on the microstructure and mechanical properties of extruded Mg-Zn based alloys. Technischen Universität: Berlin, Germany, 2010. Available online: opus4.kobv.de/opus4-tuberlin/files/2653/mezagarcia_enrique.pdf (accessed on 17 December 2014).
- Kamrani, S.; Fleck, C. Effects of calcium and rare-earth elements on the microstructure and tension–compression yield asymmetry of ZEK100 alloy. Mater. Sci. Eng. A 2014, 618, 238–243. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Zhang, B.; Dou, Y. Influence of Er addition and extrusion temperature on the microstructure and mechanical properties of a Mg–Zn–Zr magnesium alloy. Mater. Sci. Eng. A 2011, 528, 4740–4746. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Li, W.; Pan, F.; Guo, Z. Partition of Er among the constituent phases and the yield phenomenon in a semi-continuously cast Mg–Zn–Zr alloy. Scripta Mater. 2010, 63, 367–370. [Google Scholar] [CrossRef]
- Yu, H.; Yan, H.; Chen, J.; Su, B.; Zheng, Y.; Shen, Y.; Ma, Z. Effects of minor gd addition on microstructures and mechanical properties of the high strain-rate rolled Mg–Zn–Zr alloys. J. Alloy. Compd. 2014, 586, 757–765. [Google Scholar] [CrossRef]
- Xiao, W.; Shen, Y.; Wang, L.; Wu, Y.; Cao, Z.; Jia, S.; Wang, L. The influences of rare earth content on the microstructure and mechanical properties of Mg–7Zn–5Al alloy. Mater. Des. 2010, 31, 3542–3549. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, J.; Yang, J.; Jia, S.; Wang, L. Microstructure and mechanical properties of Mg–12.3Zn–5.8Y–1.4Al alloy. Mater. Sci. Eng. A 2008, 485, 55–60. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Wang, Y.; Zeng, X.; Ding, W. Effect of nd and y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy. J. Alloy. Compd. 2007, 427, 115–123. [Google Scholar] [CrossRef]
- Yu, H.; Park, S.H.; You, B.S.; Kim, Y.M.; Yu, H.S.; Park, S.S. Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1 wt% cerium addition. Mater. Sci. Eng. A 2013, 583, 25–35. [Google Scholar] [CrossRef]
- Xu, D.K.; Liu, L.; Xu, Y.B.; Han, E.H. The effect of precipitates on the mechanical properties of ZK60-Y alloy. Mater. Sci. Eng. A 2006, 420, 322–332. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, S.; Zeng, X.; Ding, W. Effects of Re on the microstructure and mechanical properties of Mg–8Zn–4Al magnesium alloy. Mater. Sci. Eng. A 2006, 416, 109–118. [Google Scholar] [CrossRef]
- Wu, A.-R.; Xia, C.-Q. Study of the microstructure and mechanical properties of Mg-rare earth alloys. Mater. Des. 2007, 28, 1963–1967. [Google Scholar] [CrossRef]
- Wang, J.; Song, P.; Huang, S.; Pan, F. Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg–9Gd–xEr–1.6Zn–0.6Zr magnesium alloys. Mater. Sci. Eng. A 2013, 563, 36–45. [Google Scholar] [CrossRef]
- Cheng, W.; Park, S.S.; Tang, W.; You, B.S.; Koo, B.H. Influence of rare earth on the microstructure and age hardening response of indirect-extruded Mg-5Sn-4Zn alloy. J. Rare Earths 2010, 28, 785–789. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tekumalla, S.; Seetharaman, S.; Almajid, A.; Gupta, M. Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals 2015, 5, 1-39. https://doi.org/10.3390/met5010001
Tekumalla S, Seetharaman S, Almajid A, Gupta M. Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals. 2015; 5(1):1-39. https://doi.org/10.3390/met5010001
Chicago/Turabian StyleTekumalla, Sravya, Sankaranarayanan Seetharaman, Abdulhakim Almajid, and Manoj Gupta. 2015. "Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review" Metals 5, no. 1: 1-39. https://doi.org/10.3390/met5010001
APA StyleTekumalla, S., Seetharaman, S., Almajid, A., & Gupta, M. (2015). Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals, 5(1), 1-39. https://doi.org/10.3390/met5010001