Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses
Abstract
:1. Introduction
2. Mechanical Properties and Deformation of Bulk Metallic Glasses and Composites at Room Temperature
Element | Content, at % | σy | σf | E | HV | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | |||||
Al | La | Cu | 35 | 55 | 1 | 880 | 43 | 256 | [10] | |
Al | La | Cu | 30 | 50 | 20 | 750 | 32 | 240 | [10] | |
Al | La | Cu | 25 | 55 | 20 | 600 | 32 | 213 | [10] | |
Al | La | Cu | 25 | 50 | 25 | 535 | 29 | 208 | [10] | |
Cu | Hf | Al | 50 | 42.5 | 7.5 | 2370 | 128 | 673 | [11] | |
Cu | Hf | Al | 52.5 | 40 | 7.5 | 2345 | 125 | 661 | [11] | |
Cu | Hf | Al | 52.5 | 40 | 7.5 | 2344 | 125 | 661 | [12] | |
Cu | Hf | Al | 50 | 45 | 5 | 2262 | 121 | 627 | [11] | |
Cu | Hf | Al | 50 | 45 | 5 | 2260 | 121 | 627 | [12] | |
Cu | Hf | Ti | 60 | 25 | 15 | 2010 | 2160 | 124 | [13] | |
Cu | Hf | Ti | 60 | 25 | 15 | 2024 | 2088 | 124 | [12] | |
Cu | Hf | Ti | 60 | 25 | 15 | 1920 | 2130 | 120 | [14] | |
Cu | Zr | Ag | 50 | 45 | 5 | 1940 | 112 | 599 | [15] | |
Cu | Zr | Ag | 50 | 45 | 5 | 1940 | 112 | 599 | [15] | |
Cu | Zr | Ag | 45 | 47.5 | 7.5 | 1820 | 108 | 556 | [15] | |
Cu | Zr | Ag | 45 | 45 | 10 | 1810 | 108 | 542 | [15] | |
Cu | Zr | Ag | 42.5 | 47.5 | 10 | 1780 | 106 | 534 | [15] | |
Cu | Zr | Ag | 45 | 50 | 5 | 1885 | 111 | 585 | [15] | |
Cu | Zr | Al | 47.5 | 47.5 | 5 | 1547 | 2265 | 87 | [16] | |
Cu | Zr | Al | 55 | 40 | 5 | 2210 | 115 | 581 | [17] | |
Cu | Zr | Al | 52.5 | 42.5 | 5 | 2115 | 111 | 573 | [17] | |
Cu | Zr | Al | 50 | 45 | 5 | 1885 | 102 | 546 | [17] | |
Cu | Zr | Al | 46 | 46 | 8 | 1894 | 2250 | 580 | [18] | |
Cu | Zr | Al | 55 | 40 | 5 | 2210 | 115 | 581 | [19,20] | |
Cu | Zr | Al | 52.5 | 42.5 | 5 | 2115 | 111 | 573 | [19,20] | |
Cu | Zr | Al | 50 | 45 | 5 | 1885 | 102 | 546 | [19,20] | |
Cu | Zr | Al | 48 | 48 | 4 | 1199 | 1882 | 103 | [21] | |
Cu | Zr | Al | 47 | 47 | 6 | 1733 | 2250 | 580 | [22] | |
Cu | Zr | Ga | 52.5 | 42.5 | 5 | 1940 | 105 | 552 | [23] | |
Cu | Zr | Ga | 55 | 40 | 5 | 2025 | 109 | 565 | [23] | |
Cu | Zr | Ga | 52.5 | 40 | 7.5 | 2130 | 111 | 581 | [23] | |
Cu | Zr | Ga | 57.5 | 40 | 2.5 | 1910 | 105 | 547 | [23] | |
Cu | Zr | Ti | 60 | 30 | 10 | 1785 | 2150 | 114 | [24] | |
Gd | Al | Ni | 60 | 30 | 10 | 1330 | 67 | [25] | ||
Gd | Al | Ni | 55 | 25 | 20 | 1300 | 65 | [26] | ||
Gd | Al | Ni | 65 | 25 | 10 | 1300 | 63 | [26] | ||
Gd | Co | Al | 60 | 30 | 10 | 1186 | 60 | [25] | ||
Gd | Co | Al | 60 | 25 | 15 | 1250 | 63 | [25] | ||
Gd | Co | Al | 60 | 20 | 20 | 1240 | 63 | [25] | ||
Gd | Ni | Al | 60 | 25 | 15 | 1280 | 64 | [25] | ||
Gd | Ni | Al | 60 | 20 | 20 | 1240 | 63 | [25] | ||
Gd | Ni | Al | 50 | 25 | 25 | 1320 | 66 | [26] | ||
La | Al | Ni | 45 | 45 | 10 | 1080 | 795 | 52 | 330 | [27] |
La | Al | Ni | 45 | 35 | 20 | 995 | 720 | 46 | 305 | [27] |
La | Al | Ni | 50 | 35 | 15 | 950 | 715 | 41 | 290 | [27] |
La | Al | Ni | 50 | 30 | 20 | 930 | 715 | 41 | 285 | [27] |
La | Al | NI | 55 | 25 | 20 | 735 | 515 | 34 | 225 | [22] |
Mg | Cu | Y | 80 | 10 | 10 | 630 | 820 | 220 | [28] | |
Mg | Cu | Y | 75 | 15 | 10 | 743 | 50 | [28] | ||
Mg | Ni | Gd | 75 | 15 | 10 | 929 | [29] | |||
Mg | Ni | Gd | 70 | 20 | 10 | 880 | [29] | |||
Mg | Ni | Gd | 70 | 15 | 15 | 965 | [29] | |||
Mg | Ni | Gd | 65 | 25 | 10 | 884 | [29] | |||
Mg | Ni | Gd | 65 | 20 | 15 | 909 | [29] | |||
Mg | Ni | Gd | 60 | 25 | 15 | 869 | [29] | |||
Mg | Ni | Y | 82.5 | 12.5 | 5 | 610 | 44 | 212 | [30] | |
Mg | Ni | Y | 80 | 15 | 5 | 830 | 46 | 224 | [30] | |
Mg | Ni | Y | 85 | 10 | 5 | 640 | 40 | 193 | [30] | |
Zr | Al | Ni | 70 | 10 | 20 | 1411 | 1335 | 61 | 432 | [31] |
Zr | Al | Ni | 65 | 10 | 25 | 1581 | 1520 | 64.5 | 484 | [31] |
Zr | Al | Ni | 65 | 15 | 20 | 1614 | 1640 | 70.5 | 494 | [31] |
Zr | Al | Ni | 60 | 15 | 25 | 1640 | 1715 | 72.6 | 502 | [31] |
Zr | Al | Ni | 60 | 20 | 20 | 1795 | 1720 | 78.2 | 549 | [31] |
Zr | Co | Al | 55 | 30 | 15 | 1790 | 98 | 543 | [32] | |
Zr | Co | Al | 55 | 25 | 20 | 1750 | 96 | 530 | [32] | |
Zr | Co | Al | 55 | 25 | 20 | 1900 | 114 | [33] | ||
Zr | Cu | Al | 50 | 40 | 10 | 1821 | 89 | [34] | ||
Zr | Cu | Al | 50 | 40 | 10 | 1860 | 88 | 496 | [35] | |
Zr | Cu | Al | 52.5 | 37.5 | 10 | 1840 | 86 | 485 | [32,36] | |
Zr | Cu | Al | 50 | 37.5 | 12.5 | 1960 | 93 | 511 | [32,36] | |
Zr | Cu | Al | 50 | 42.5 | 7.5 | 1820 | 86 | 475 | [32,36] | |
Zr | Cu | Al | 55 | 35 | 10 | 1810 | 83 | 470 | [36] | |
Zr | Cu | Al | 60 | 30 | 10 | 1720 | 80 | 446 | [36] | |
Zr | Cu | Al | 47.5 | 42.5 | 10 | 1920 | 90 | 508 | [36] | |
Zr | Ni | Al | 60 | 25 | 15 | 1760 | 88 | 495 | [31] | |
Zr | Ni | Al | 55 | 25 | 20 | 1780 | 89 | 502 | [31,37] | |
Zr | Ni | Al | 55 | 30 | 15 | 1820 | 99 | 514 | [31,37] | |
Zr | Ni | Al | 60 | 20 | 20 | 1793 | 1720 | 78.2 | 549 | [38] |
Zr | Ni | Al | 70 | 20 | 10 | 1411 | 1335 | 61 | 432 | [31,39] |
Zr | Ni | Al | 65 | 25 | 10 | 1520 | 1581 | 64.5 | 484 | [31,39] |
Zr | Ni | Al | 65 | 20 | 15 | 1614 | 1640 | 494 | [31,39] | |
Zr | Ni | Al | 60 | 25 | 15 | 1640 | 1715 | 502 | [31,39] | |
Zr | Ni | Ti | 40 | 37 | 23 | 1630 | 524 | [40] |
Element | Content, at % | σy | σf | E | HV | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||||
Ce | Al | Cu | Co | 68 | 10 | 20 | 2 | 1180 | 31.34 | [41] | ||
Ce | Al | Cu | Fe | 68 | 10 | 20 | 2 | 1232 | 32.7 | [41] | ||
Ce | Al | Cu | Nb | 68 | 10 | 20 | 2 | 1165 | 30.95 | [41] | ||
Ce | Al | Cu | Ni | 68 | 10 | 20 | 2 | 1198 | 31.93 | [41] | ||
Co | Fe | Ta | B | 38 | 25 | 5.5 | 31.5 | 5185 | 268 | [42] | ||
Cu | Hf | Ti | Ta | 56.4 | 23.5 | 14.1 | 6 | 2125 | 2100 | 104 | [43] | |
Cu | Zr | Ag | Al | 45 | 45 | 7 | 3 | 1836 | 110 | 540 | [44] | |
Cu | Zr | Ag | Al | 45 | 45 | 5 | 5 | 1890 | 112 | 556 | [44] | |
Cu | Zr | Ag | Al | 45 | 45 | 3 | 7 | 1912 | 112 | 561 | [44] | |
Cu | Zr | Hf | Ag | 45 | 25 | 20 | 10 | 2000 | 122 | 579 | [41] | |
Cu | Zr | Ti | Be | 55.5 | 27.75 | 9.25 | 7.5 | 2450 | 146 | 710 | [45] | |
Cu | Zr | Ti | Y | 58.8 | 29.4 | 9.8 | 2 | 1780 | 2050 | 115 | [46] | |
Fe | Si | B | Nb | 72 | 9.6 | 14.4 | 4 | 4200 | 200 | [47] | ||
La | Al | Cu | Ag | 62.5 | 12.5 | 20 | 5 | 640 | 36 | 201 | [48] | |
La | Al | Cu | Ag | 55 | 15 | 20 | 10 | 758 | 42 | 208 | [48] | |
Mg | Cu | Ni | Gd | 65 | 5 | 20 | 10 | 874 | 54 | [49] | ||
Mg | Y | Zn | Cu | 65 | 10 | 5 | 20 | 860 | 74 | [50] | ||
Ni | Nb | Ti | Zr | 60 | 15 | 10 | 15 | 2770 | 156 | [51] | ||
Ni | Si | B | Nb | 72 | 7.68 | 16.32 | 4 | 2510 | 77 | 870 | [52] | |
Ni | Si | B | Ta | 72 | 7.68 | 16.32 | 4 | 2730 | 75 | 920 | [52] | |
Ni | Ta | Ti | Zr | 60 | 15 | 15 | 10 | 3180 | 67 | [53] | ||
Pd | Cu | Ni | P | 40 | 30 | 10 | 20 | 1640 | 515 | [54] | ||
Pd | Cu | Si | P | 79 | 6 | 10 | 5 | 1475 | 1575 | 82 | [55] | |
Pd | Pt | Cu | P | 35 | 15 | 30 | 20 | 1410 | 470 | [56] | ||
Pt | Cu | Ni | P | 57.5 | 14.7 | 5.3 | 22.5 | 1400 | 1470 | [57] | ||
Ti | Ni | Cu | Sn | 50 | 20 | 25 | 5 | 2050 | 102 | 650 | [58] | |
Ti | Ni | Cu | Sn | 50 | 20 | 23 | 7 | 2200 | 105 | 670 | [58] | |
Ti | Ni | Cu | Sn | 50 | 22 | 25 | 3 | 2050 | 98 | 640 | [58] | |
Zr | Al | Co | Cu | 55 | 20 | 20 | 5 | 2000 | 1960 | 92 | [59] | |
Zr | Al | Ni | Pd | 65 | 7.5 | 10 | 17.5 | 1340 | 1510 | [60] | ||
Zr | Cu | Ni | Al | 52 | 32 | 4 | 12 | 1780 | 88 | 501 | [61] | |
Zr | Cu | Ni | Al | 52 | 30 | 6 | 12 | 1820 | 93 | 506 | [61] | |
Zr | Cu | Ni | Al | 50 | 26 | 12 | 12 | 1878 | 88 | 498 | [61] | |
Zr | Cu | Ni | Al | 50 | 34 | 4 | 12 | 1905 | 91 | 517 | [61] | |
Zr | Cu | Ni | Al | 48 | 32 | 8 | 12 | 1894 | 94 | 513 | [61] | |
Zr | Cu | Ni | Al | 50 | 32 | 6 | 12 | 1875 | 92 | 521 | [61] | |
Zr | Cu | Ni | Al | 52 | 28 | 8 | 12 | 1798 | 94 | 512 | [61] | |
Zr | Cu | Ni | Al | 50 | 30 | 8 | 12 | 1820 | 92 | 526 | [61] | |
Zr | Cu | Ni | Al | 46 | 34 | 8 | 12 | 1777 | 111 | 562 | [61] | |
Zr | Cu | Ni | Al | 48 | 28 | 12 | 12 | 1906 | 102 | 530 | [61] | |
Zr | Cu | Ni | Al | 48 | 34 | 6 | 12 | 1899 | 94 | 529 | [61] | |
Zr | Cu | Ni | Al | 50 | 28 | 10 | 12 | 1993 | 92 | 517 | [61] | |
Zr | Cu | Ni | Al | 48 | 30 | 10 | 12 | 1378 | 94 | 520 | [61] | |
Zr | Cu | Ni | Al | 48 | 30 | 10 | 12 | 1980 | 92 | 528 | [61] | |
Zr | Cu | Ni | Al | 52 | 26 | 10 | 12 | 1960 | 89 | 509 | [61] | |
Zr | Cu | Ni | Al | 46 | 30 | 12 | 12 | 1399 | 106 | 552 | [61] | |
Zr | Cu | Fe | Al | 60 | 25 | 5 | 10 | 1643 | 92 | [62] | ||
Zr | Cu | Fe | Al | 60 | 20 | 10 | 10 | 1708 | 104 | [62] | ||
Zr | Fe | Al | Cu | 60 | 10 | 7.5 | 22.5 | 1718 | 100 | [62] |
3. Deformation of Bulk Metallic Glasses at Cryogenic Temperature
4. Strain-Rate Sensitivity
5. In situ Room-Temperature Tensile Deformation in TEM
6. Effect of Cyclic and Long-Term Creep Deformation in the Elastic Region
7. Conclusive Remarks
Acknowledgements
References
- Inoue, A. High strength bulk amorphous alloys with low critical cooling rates. Mater. Trans. JIM 1995, 36, 866–875. [Google Scholar]
- Johnson, W.L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull 1999, 24, 42–56. [Google Scholar]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Argon, A.S. Mechanisms of inelastic deformation in metallic lasses. Phys. Chem. Solids 1982, 43, 945. [Google Scholar] [CrossRef]
- Liu, F.X.; Liaw, P.K.; Wang, G.Y.; Chiang, C.L.; Smith, D.A.; Rack, P.D.; Chu, J.P.; Buchanan, R.A. Specimen-geometry effects on mechanical behavior of metallic glasses. Intermetallics 2006, 14, 1014. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, B.; Koshiba, H.; Kato, H.; Yavari, A.R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2003, 2, 661. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Hua, N.; Zhang, T. Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. J. Mater. Res. 2011, 26(16), 2072–2079. [Google Scholar] [CrossRef]
- Amiya, K.; Inoue, A. Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high, strength and high glass-forming ability. Rev. Adv. Mater. Sci. 2008, 18, 27. [Google Scholar]
- Louzguine, D.V.; Inoue, A. Structural and thermal investigations of a high-strength Cu-Zr-Ti-Co bulk metallic glass. Philos. Mag. Lett. 2003, 83, 191–196. [Google Scholar] [CrossRef]
- Inoue, A.; Yamaguchi, H.; Zhang, T.; Masumoto, T. Al-La-Cu amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 1990, 31, 104–109. [Google Scholar]
- Zhang, W.; Inoue, A. Synthesis, thermal stability and mechanical properties of Cu-based bulk glassy alloys. World Bulk Met. Glass. Compos. 2007, 201–230. [Google Scholar]
- Inoue, A.; Zhang, W.; Saida, J. Synthesis and fundamental properties of Cu-based bulk glassy alloys in binary and multi-component systems. Mater. Trans. 2004, 4, 1153–1162. [Google Scholar]
- Inoue, A.; Zhang, W.; Zhang, T.; Kurosaka, K. Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys. J. Mater. Res. 2001, 16, 2836–2844. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W.; Zhang, T.; Kurosaka, K. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 2001, 49, 2645–2652. [Google Scholar] [CrossRef]
- Zhang, W.; Inoue, A. High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu-Zr-Ag ternary system. J. Mater. Res. 2006, 21, 234–241. [Google Scholar] [CrossRef]
- Kim, K.B.; Das, J.; Lee, M.H.; Yi, S.; Fleury, E.; Zhang, Z.F.; Wang, W.H.; Eckert, J. Propagation of shear bands in a Cu47.5Zr47.5Al5 bulk metallic glass. J. Mater. Res. 2008, 23, 6–12. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W. Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater. Trans. 2002, 43, 2921–2925. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Xie, G.; Inoue, A. Glass-forming ability and mechanical properties of the ternary Cu-Zr-Al and quaternary Cu-Zr-Al-Ag bulk metallic glasses. Mater. Trans. 2007, 48, 1626–1630. [Google Scholar] [CrossRef]
- Zhang, W.; Inoue, A. Formation and mechanical strength of new Cu-based bulk glassy alloys with large supercooled liquid region. Mater. Trans. 2004, 45, 1210–1213. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, W.; Inoue, A. Bulk metallic glass formation near a quaternary Cu-Zr-Ti-Al eutectic point. Mater. Trans. 2006, 47, 2804–2807. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; He, J.P; Yao, K.F.; Wei, B.C.; Chen, G.L. Metallographic analysis of Cu-Zr-Al bulk amorphous alloys with yttrium addition. Scr. Mater. 2006, 54, 1351–1355. [Google Scholar] [CrossRef]
- Bhatt, J.; Wu, J.; Xia, J.; Wand, Q.; Dong, C.; Murty, B.S. Optimization of bulk metallic glass forming compositions in Zr-Cu-Al system by thermodynamic modeling. Intermetallics 2007, 15, 716–721. [Google Scholar] [CrossRef]
- Zhang, W.; Inoue, A. Cu-based bulk glass formation in the Cu-Zr-Ga alloy system and their mechanical properties. Mater. Trans. 2004, 45, 532–535. [Google Scholar] [CrossRef]
- Men, H.; Fu, J.; Ma, C.; Pang, S.; Zhang, T. Bulk glass formation in ternary Cu-Zr-Ti system. J. Univ. Sci. Technol. Beijing 2007, 14, 19. [Google Scholar] [CrossRef]
- Chen, D.; Takeuchi, A.; Inoue, A. Gd-Co-Al and Gd-Ni-Al bulk metallic glasses with high glass forming ability and good mechanical properties. Mater. Sci. Eng. 2007, 457, 226–230. [Google Scholar] [CrossRef]
- Chen, D.; Takeuchi, A.; Inoue, A. Gd-Ni-Al bulk glasses with great glass-forming ability and better mechanical properties. J. Mater. Sci. 2007, 42, 8662–8666. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Masumoto, T. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater. Trans. JIM 1989, 30, 965–972. [Google Scholar]
- Inoue, A.; Kato, A.; Zhang, T.; Kim, S.; Masumoto, T. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by metallic mold casting method. JIM 1991, 32, 609–616. [Google Scholar]
- Park, E.S.; Chang, H.J.; Kim, D.H. Mg-rich Mg-Ni-Gd ternary bulk metallic glasses with high compressive specific strength and ductility. J. Mater. Res. 2007, 22, 334–338. [Google Scholar] [CrossRef]
- Kim, S.G.; Inoue, A.; Masumoto, T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region. Mater. Trans. JIM 1990, 31, 929–934. [Google Scholar]
- Inoue, A.; Zhang, T.; Masumoto, T. Zr-Al-Ni amorphous alloys with high class transition temperature and significant supercooled liquid region. Mater. Trans. JIM 1990, 31, 177–183. [Google Scholar]
- Yokoyama, Y.; Yamasaki, T.; Liaw, P.K.; Inoue, A. Relations between the thermal and mechanical properties of cast Zr-TM-Al (TM: Cu, Ni, or Co) bulk glassy alloys. Mater. Trans. 2007, 48, 1846–1849. [Google Scholar] [CrossRef]
- Wada, T.; Zhang, T.; Inoue, A. Formation, thermal stability and mechanical properties in Zr-Al-Co bulk glassy alloys. JIM 2002, 43, 2843–2846. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Kobayashi, A.; Fukaura, K.; Inoue, A. Oxygen embrittlement and effect of the addition of Ni element in a bulk amorphous Zr-Cu-Al alloy. Mater. Trans. 2002, 43, 571–574. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Liaw, P.K.; Nishijima, M.; Hiraga, K.; Buchanan, R.A.; Inoue, A. Fatigue-strength enhancement of cast Zr50Cu40Al10 glassy alloys. Mater. Trans. 2006, 47, 1286–1293. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Yamasaki, T.; Liaw, P.K.; Inoue, A. Relations between the thermal and mechanical properties of cast Zr-TM-Al (TM: Cu, Ni, or Co) bulk glassy alloys. Evolution of mechanical properties of cast Zr50Cu40Al10 glassy alloys by structural relaxation. Mater. Trans. 2005, 46, 2755–2761. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W. New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 2002, 43, 708–711. [Google Scholar] [CrossRef]
- Jing, Q.; Zhang, Y.; Wang, D.; Li, Y. A study of the glass forming ability in Zr-Ni-Al alloys. Mater. Sci. Eng. 2006, 441, 106–111. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Masumoto, T. Amorphous Zr-Al-TM (TM = Co,Ni,Cu) alloys with significant supercooled liquid region of over 100 K. Mater. Trans. JIM 1991, 32, 1005–1010. [Google Scholar]
- Yi, S.; Park, T.G.; Kim, D.H. Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si, Sn) system. J. Mater. Res. 2000, 15, 11. [Google Scholar]
- Zhang, B.; Zhao, D.Q.; Pan, M.X.; Wang, R.J.; Wang, W.H. Amorphous metallic plastic. Acta Mater. 2006, 54, 3025–3032. [Google Scholar] [CrossRef]
- Koshiba, H.; Inoue, A. Preparation and magnetic properties of Co-based bulk glassy alloys. Mater. Trans. 2001, 42, 2572–2575. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, W.; Kimura, H.; Inoue, A. Excellent mechanical properties of Cu-Hf-Ti-Ta bulk glassy alloys containing in situ dendrite Ta-based BCC phase. Mater. Trans. 2004, 45, 2936–2940. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Qin, C.; Inoue, A. Synthesis and properties of Cu-Zr-Ag-Al glassy alloys with high glass-forming ability. Mater. Sci. Eng. 2008, 148, 92–96. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Kurosaka, K.; Zhang, W. High strength Cu-based bulk glassy alloys in Cu-Zr-Ti-Be system. Mater. Trans. 2001, 42, 1800–1804. [Google Scholar] [CrossRef]
- Zhang, T.; Kurosaka, K.; Inoue, A. Thermal and mechanical properties of Cu-based Cu-Zr- Ti-Y bulk glassy alloys. Mater. Trans. 2001, 42, 2042–2045. [Google Scholar] [CrossRef]
- Makino, A.; Kubota, T.; Chang, C.; Makabe, M.; Inoue, A. FeSiBP bulk metallic glasses with unusual combination of high magnetization and high glass-forming ability. Mater. Trans. 2007, 48, 3024–3027. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, F.; Inoue, A. Formation and properties of new La-based bulk glassy alloys with diameters up to centimeter order. Mater. Trans. 2007, 48, 68–73. [Google Scholar] [CrossRef]
- Yuan, G.; Amiya, K.; Inoue, A. Structural-relaxation, glass-forming ability and mechanical properties of Mg-Cu-Ni-Gd alloys. J. NonCryst. Solids 2005, 351, 729–735. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, T; Inoue, A. Thermal stability, glass-forming ability and mechanical properties of Mg-Y-Zn-Cu glassy alloys. Mater. Trans 2003, 44, 2271–2275. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W.; Zhang, T. Thermal stability and mechanical strength of bulk glassy Ni-Nb-Ti-Zr alloys. Mater. Trans. 2002, 43, 1952–1956. [Google Scholar] [CrossRef]
- Shen, B.; Inoue, A. Glass transition behavior and mechanical properties of Ni-Si-B-based glassy alloys. Mater. Trans. 2003, 44, 1425–1428. [Google Scholar] [CrossRef]
- Arai, K.; Zhang, W.; Jia, F.; Inoue, A. Synthesis and thermal stability of new Ni-based bulk glassy alloy with excellent mechanical properties. Mater. Trans. 2006, 47, 2358–2362. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, J.S.; Lim, H.K.; Kim, W.T.; Kim, D.H. Heating and cooling rate dependence of the parameters representing the glass forming ability in bulk metallic glasses. J. NonCryst. Solids 2005, 351, 1433–1440. [Google Scholar] [CrossRef]
- Liu, L.; Inoue, A.; Zhang, T. Formation of bulk Pd-Cu-Si-P glass with good mechanical properties. Mater. Trans. 2005, 46, 376–378. [Google Scholar] [CrossRef]
- Takenaka, K.; Wada, T.; Nishiyama, N.; Kimura, H.; Inoue, A. New Pd-based bulk glassy alloys with high glass-forming ability and large supercooled liquid region. Mater. Trans. 2005, 46, 1720–1724. [Google Scholar] [CrossRef]
- Inoue, A.; Nishiyama, N.; Kimura, H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans. JIM 1997, 38, 179–183. [Google Scholar]
- Zhang, T.; Inoue, A. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans. JIM 1998, 39, 1001–1006. [Google Scholar]
- Wada, T.; Zhang, T.; Inoue, A. Formation and high mechanical strength of bulk glassy alloys in Zr-Al-Co-Cu system. Mater. Trans. 2003, 44, 1839–1844. [Google Scholar] [CrossRef]
- Saida, J.; Kato, H.; Deny, A.; Setyawan, H.; Yoshimi, K.; Inoue, A. Deformation-induced nanoscale dynamic transformation Studies in Zr-Al-Ni-Pd and Zr-Al-Ni-Cu Bulk Metallic Glasses. Mater. Trans. 2007, 48, 1327–1335. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Inoue, A. Compositional dependence of thermal and mechanical properties of quaternary Zr-Cu-Ni-Al bulk glassy alloys. Mater. Trans. 2007, 48, 1282–1287. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Zhang, W.; Louzguine-Luzgin, D.V.; Inoue, A. High glass-forming ability and unusual deformation behavior of new Zr-Cu-Fe-Al bulk metallic glasses. Mater. Sci. Forum 2010, 654–656, 1042–1045. [Google Scholar]
- Conner, R.D.; Li, Y.; Nix, W.D.; Johnson, W.L. Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater. 2004, 52, 2429–2434. [Google Scholar] [CrossRef]
- Donovan, P.E.; Stobbs, W.M. The structure of shear bands in metallic glasses. Acta Metall. 1981, 29, 1419–1436. [Google Scholar] [CrossRef]
- Chen, H.S. Plastic flow in metallic glasses under compression. Scr. Metar. 1973, 7, 931–935. [Google Scholar] [CrossRef]
- Mear, F.O.; Wada, T.; Louzguine-Luzgin, D.V.; Inoue, A. Highly inhomogeneous compressive plasticity in nanocrystal-toughened Zr-Cu-Ni-Al bulk metallic glass. Philos. Mag. Lett. 2009, 89, 276–281. [Google Scholar] [CrossRef]
- Yavari, A.R.; Lewandowski, J.J.; Eckert, J. Mechanical properties of bulk metallic glasses. MRS Bull. 2007, 32, 635–638. [Google Scholar] [CrossRef]
- Pan, J.; Chan, K.C.; Chena, Q.; Liu, L. Enhanced plasticity by introducing icosahedral medium-range order in ZrCuNiAl metallic glass. Intermetallics 2012, 24, 79–83. [Google Scholar] [CrossRef]
- Chen, N.; Louzguine-Luzgin, D.V.; Xie, G.Q.; Wada, T.; Inoue, A. Influence of minor Si addition on glass forming ability and mechanical properties of Pd40Ni40P20 alloy. Acta Mater. 2009, 57, 2775–2780. [Google Scholar] [CrossRef]
- Chen, N.; Pan, D.; Louzguine-Luzgin, D.V.; Xie, G.Q.; Chen, M.W.; Inoue, A. Improved thermal stability and ductility of flux-treated Pd40Ni40Si4P16 BMG. Scr. Mater. 2010, 62, 17–20. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Zhang, W.; Xie, G.Q.; Louzguine-Luzgin, D.V.; Inoue, A. Stable flowing of localized shear bands in soft bulk metallic glasses. Acta Mater. 2010, 58, 904–909. [Google Scholar] [CrossRef]
- Kato, H.; Saida, J.; Inoue, A. Influence of hydrostatic pressure during casting on as cast structure and mechanical properties in Zr65Al7.5Ni10Cu17.5 − xPdx (x= 0, 17.5) alloys. Scr. Mater. 2004, 51, 1063–1068. [Google Scholar] [CrossRef]
- Schroers, J.; Johnson, W.L. Ductile bulk metallic glass. Phys. Rev. Lett. 2004, 93, 255506–255510. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Wang, W.H.; Greer, A.L. Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 2005, 85, 77. [Google Scholar] [CrossRef]
- Madge, S.V.; Louzguine-Luzgin, D.V.; Lewandowski, J.J.; Greer, A.L. Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses. Acta Mate. 2012, 60, 4800–4809. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Xie, G.; Zhang, Q.; Inoue, A. Effect of Fe on the glass-forming ability, structure and devitrification behavior of Zr-Cu-Al bulk glass-forming alloys. Philos. Mag. 2010, 90, 1955–1968. [Google Scholar] [CrossRef]
- Wright, W.J.; Schwarz, R.B.; Nix, W.D. Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng. 2001, 319–321, 229–232. [Google Scholar]
- Dalla Torre, F.H.; Dubach, A.; Siegrist, M.E.; Löffler, J.F. Negative strain rate sensitivity in bulk metallic glass and its similarities with dynamic strain aging effect during deformation. Appl. Phys. Lett. 2006, 89, 091918. [Google Scholar] [CrossRef]
- Yu, H.B.; Wang, W.H.; Zhang, J.L.; Shek, C.H.; Bai, H.Y. Statistic analysis of the mechanical behavior of bulk metallic glasses. Adv. Eng. Mater. 2009, 11, 370–375. [Google Scholar] [CrossRef]
- Liu, F.X.; Liaw, P.K.; Wang, G.Y.; Chiang, C.L.; Smith, D.A.; Rack, P.P.D; Chu, P.P.; Buchanan, R.A. Specimen-geometry effects on mechanical behavior of metallic glasses. Intermetallics 2006, 14, 1014–1018. [Google Scholar] [CrossRef]
- Uchic, M.D.; Dimiduk, D.M.; Florando, N.; Nix, W.D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef]
- Wang, G.; Feng, Q.; Yang, B.; Jiang, W.; Liaw, P.K.; Liu, C.T. Thermographic studies of temperature evolutions in bulk metallic glasses. Intermetallics 2012, 30, 1–11. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Sun, B.B.; Sui, M.L.; Lu, K.; Ma, E. Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 2004, 84, 4029. [Google Scholar]
- Yokoyama, Y.; Fujita, K.; Yavari, A.R.; Inoue, A. Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass. Philos. Mag. Lett. 2009, 89, 322. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, W.; Tsurui, T.; Yavari, A.R.; Greer, A.L. Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 2005, 85, 221–229. [Google Scholar] [CrossRef]
- Louzguine, D.V.; Kato, H.; Inoue, A. High-strength Cu-based crystal-glassy composite with enhanced ductility. Appl. Phys. Lett. 2004, 84, 1088–1089. [Google Scholar] [CrossRef]
- Das, J.; Tang, M.B.; Kim, K.B.; Theissmann, R.; Baier, F.; Wang, W.H.; Eckert, J. Work-hardenable ductile bulk metallic glass. Phys. Rev. Lett. 2005, 94, 205501. [Google Scholar] [CrossRef]
- Mear, F.O.; Wada, T.; Louzguine-Luzgin, D.V.; Inoue, A. Structural investigations of rapidly solidified Mg–Cu–Y alloys. J. Alloy. Compd. 2010, 496, 149–154. [Google Scholar] [CrossRef]
- Hajlaoui, K.; Yavari, A.R.; LeMoulec, A.; Botta, W.J.; Vaughan, F.G.; Das, J.; Greer, A.L.; Kvick, A. Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. NonCryst. Solids 2007, 353, 327–331. [Google Scholar]
- Saida, J.; Kato, H.; Setyawan, A.D.H.; Inoue, A. Characterization and properties of nanocrystal-forming Zr-based bulk metallic glasses. Rev. Adv. Mater. Sci. 2005, 10, 34–38. [Google Scholar]
- Louzguine-Luzgin, D.V.; Zeng, Y.; Setyawan, A.D.H.; Nishiyama, N.; Kato, H.; Saida, J.; Inoue, A. Corrosion resistance and XPS studies of Ni-rich Ni-Pd-P-B bulk glassy alloys. J. Mater. Res 2007, 22, 1087–1090. [Google Scholar] [CrossRef]
- Gao, M.C.; Hackenberg, R.E.; Shiflet, G.J. Deformation-induced nanocrystal precipitation in Al-base metallic glasses. Mater. Trans. 2001, 42, 1741–1747. [Google Scholar] [CrossRef]
- Jiang, W.H.; Atzmon, M. Plastic flow of a nanocrystalline/amorphous Al90Fe5Gd5 composite formed by rolling. Intermetallics 2006, 14, 962–965. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Inoue, A. Comparative study of the effect of cold rolling on the structure of Al-RE-Ni-Co (RE = rare-earth metals) amorphous and glassy alloys. J. NonCryst. Solids 2006, 352, 3903–3909. [Google Scholar] [CrossRef]
- Zhang, Z.F.; He, G.; Zhang, H.; Eckert, J. Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites. Scri. Mater. 2005, 52, 945–949. [Google Scholar] [CrossRef]
- Dalla Torre, F.H.; Dubach, A.; Schallibaum, J.; Loffler, J.F. Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Acta Mater. 2008, 56, 4635–4646. [Google Scholar] [CrossRef]
- Sergueeva, A.V.; Mara, N.A.; Branagan, D.J.; Mukherjee, A.K. Strain rate effect on metallic glass ductility. Scr. Mater. 2004, 50, 1303–1307. [Google Scholar] [CrossRef]
- Hajlaoui, K.; Stoica, M.; LeMoulec, A.; Charlot, F.; Yavari, A.R. Fe-Nb-B bulk metallic glass with high boron content. Rev. Adv. Mater. Sci. 2008, 18, 23–26. [Google Scholar]
- Louzguine-Luzgin, D.V.; Vinogradov, A.; Yavari, A.R.; Li, S.; Xie, G.; Inoue, A. On the deformation and fracture behaviour of a Zr-based glassy alloy. Philos. Mag. 2008, 88, 2979–2987. [Google Scholar] [CrossRef]
- Pampillo, C.A. Flow and fracture in amorphous alloys. J. Mater. Sci 1975, 10, 1194–1227. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Greer, A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006, 5, 15–18. [Google Scholar] [CrossRef]
- Yang, B.; Morrison, M.L.; Liaw, P.P.K.; Buchanan, R.A.; Wang, G.; Liu, C.T.; Denda, M. Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett 2005, 86, 141904–141907. [Google Scholar] [CrossRef]
- Chen, N.; Louzguine-Luzgin, D.V.; Xie, G.Q.; Inoue, A. Nanoscale wavy fracture surface of a Pd-based bulk metallic glass. Appl. Phys. Lett. 2009, 94, 131906. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Suh, J.Y.; Wiest, A.; Duan, G.; Lind, M.L.; Demetriou, M.D.; Johnson, W.L. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008, 451, 1085. [Google Scholar] [CrossRef]
- Hofmann, D.C.; Suh, J.Y.; Wiest, A.; Lind, M.L.; Demetriou, M.D.; Johnson, W.L. Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. PNAS 2008, 105, 20136. [Google Scholar]
- Louzguine-Luzgin, D.V.; Vinogradov, A.; Xie, G.; Li, S.; Lazarev, A.; Hashimoto, S.; Inoue, A. High-strength and ductile glassy-crystal Ni-Cu-Zr-Ti composite exhibiting stress-induced martensitic transformation. Philos. Mag. 2009, 89, 2887–2901. [Google Scholar] [CrossRef]
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Otsuka, K., Wayman, C.M., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 27–48. [Google Scholar]
- Fukuda, T.; Saburi, T.; Chihara, T.; Tsuzuki, Y. Mechanism of B2-B19-B19’ transformation in shape memory Ti-Ni-Cu alloys. Mater. Trans. JIM 1995, 36, 1244–1248. [Google Scholar]
- Kawashima, A.; Zeng, Y.; Fukuhara, M.; Kurishita, H.; Nishiyama, N.; Miki, H.; Inoue, A. Mechanical properties of a Ni60Pd20P17B3 bulk glassy alloy at cryogenic temperatures. Mater. Sci. Eng. 2008, 498, 475–481. [Google Scholar] [CrossRef]
- Tabachnikova, E.D.; Podol’ski, A.V.; Bengus, V.Z.; Smirnov, S.N.; Luzgin, D.V.; Inoue, A. Low-temperature plasticity anomaly in the bulk metallic glass Zr64.13Cu15.75Ni10.12Al10. Low Temp. Phys. 2008, 34, 675–677. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Vinogradov, A.; Li, S.; Kawashima, A.; Xie, G.; Yavari, A.R.; Inoue, A. Deformation and fracture behavior of metallic glassy alloys and glassy-crystal composites. Metall. Mater. Trans. 2011, 42A, 1504–1510. [Google Scholar]
- Vinogradov, A.; Lazarev, A.; Louzguine-Luzgin, D.V.; Yokoyama, Y.; Li, S.; Yavari, A.R.; Inoue, A. Propagation of shear bands in metallic glasses and transition from serrated to non-serrated plastic flow at low temperatures. Acta Mater. 2010, 58, 6736. [Google Scholar] [CrossRef]
- Woodford, D.A. Strain-rate sensitivity as a measure ductility. Trans. Am. Soc. Met. 1969, 62, 291–293. [Google Scholar]
- Hufnagel, T.; Jiao, C.; Li, T.; Xing, Y.; Ramesh, L.Q. Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 2002, 17, 1441. [Google Scholar] [CrossRef]
- Dalla Torre, F.H.; Dubach, A.; Siegrist, M.; Löffler, J.F. Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Appl. Phys. Lett. 2006, 89, 091918. [Google Scholar] [CrossRef]
- Liu, F.X.; Gao, Y.F.; Liaw, P.K. Rate-dependent deformation behavior of Zr-based metallic-glass coatings examined by nanoindentation. Metall. Mater. Trans. 2008, 8, 1862–1867. [Google Scholar]
- Pan, D.; Chen, M.W. Rate-change instrumented indentation for measuring strain rate sensitivity. J. Mater. Res. 2009, 4, 1466–1470. [Google Scholar]
- González, S.; Xie, G.Q.; Louzguine-Luzgin, D.V.; Perepezko, J.H.; Inoue, A. Deformation and strain rate sensitivity of a Zr-Cu-Fe-Al metallic glass. Mater. Sci. Eng. 2011, 528, 3506–3512. [Google Scholar] [CrossRef]
- Song, S.X.; Bei, H.; Wadsworth, J.; Nieh, T.G. Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 2008, 16, 813. [Google Scholar] [CrossRef]
- Dalla Torre, F.H.; Dubach, A.; Nelson, A.; Löffler, J.F. Temperature, strain and strain rate dependence of serrated flow in bulk metallic glasses. Mater. Trans. 2007, 48, 1774. [Google Scholar] [CrossRef]
- Dalla Torre, F.H.; Dubach, A.; Siegrist, M.; Löffler, J.F. Negative strain-rate sensitivity in bulk metallic glass and its similarities with the dynamic strain-aging effect during deformation. Appl. Phys. Lett. 2006, 89, 091918. [Google Scholar] [CrossRef]
- Trichy, G.R.; Scattergood, R.O.; Koch, C.C.; Murty, K.L. Influence of experimental parameters on the plastic flow curve obtained by ball indentation testing. Intermetallics 2005, 53, 1461. [Google Scholar]
- Hajlaoui, K.; Yavari, A.R.; Doisneau, B.; LeMoulec, A.; Botta, W.J.F.; Vaughan, G.; Greer, A.L.; Inoue, A.; Zhang, W.; Kvick, A. Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 2006, 54, 1829–1834. [Google Scholar] [CrossRef]
- Guo, H.; Yan, P.F.; Wang, Y.B.; Tan, J.; Zhang, Z.F.; Sui, M.L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Yavari, A.R.; Xie, G.Q.; Madge, S.; Li, S.; Saida, J.; Greer, A.; Inoue, A. Tensile deformation behaviour of Zr-based glassy alloys. Philos. Mag. Lett. 2010, 90, 139. [Google Scholar] [CrossRef]
- Guo, H.; Yan, P.P.F.; Wang, Y.B.; Tan, J.; Zhang, Z.F.; Sui, M.L.; Ma, E. Tensile ductility and necking of metallic glass. Nat. Mater. 2007, 6, 735–739. [Google Scholar] [CrossRef]
- Georgarakis, K.; Aljerf, M.; Li, Y.; Lemoulec, A.; Charlot, F.; Yavari, A.R.; Chornokhvostenko, K.; Tabachnikova, E.; Evangelakis, G.A.; Miracle, D.B.; Greer, A.L.; Zhang, T. Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 2008, 93, 031907. [Google Scholar]
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 5, 4067–4109. [Google Scholar]
- Lewandowski, J.J.; Shazly, M.; Nouri, A.S. Intrinsic and extrinsic toughening of metallic glasses. Scr. Mater. 2008, 54, 337–341. [Google Scholar]
- Caron, A.; Kawashima, A.; Fecht, H.J.; Louzguine-Luzguin, D.V.; Inoue, A. On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass. Appl. Phys. Lett. 2011, 99, 171907. [Google Scholar] [CrossRef]
- Louzguine-Luzgin, D.V.; Xie, G.; Zhang, Q.; Inoue, A. Cooling rate, structure, thermal stability and crystallization behaviour of Cu-based bulk glass-forming alloys. J. Phys. 2009, 144, 012047. [Google Scholar]
- Cavaille, J.Y.; David, L.; Perez, J. Relaxation phenomena in non crystalline solids: Case of polymeric materials. Mater. Sci. Forum 2001, 366–368, 499–545. [Google Scholar]
- Pelletier, J.M.; Louzguine-Luzgin, D.V.; Li, S.; Inoue, A. Elastic and viscoelastic properties of glassy, quasicrystalline and crystalline phases in Zr65Cu5Ni10Al7.5Pd12.5 alloys. Acta Mater. 2011, 59, 2797–2806. [Google Scholar] [CrossRef]
- Ke, H.B.; Wen, P.; Peng, H.L.; Wang, W.H.; Greer, A.L. Homogeneous deformation of metallic glass at room temperature reveals large dilatation. Scr. Mater. 2011, 64, 966–969. [Google Scholar] [CrossRef]
- Lee, S.C.; Lee, C.M.; Yang, J.W.; Lee, J.C. Microstructural evolution of an elastostatically compressed amorphous alloy and its influence on the mechanical properties. Scr. Mater. 2008, 58, 591. [Google Scholar] [CrossRef]
- Park, K.W.; Lee, C.M.; Wakeda, M.; Shibutani, Y.; Falk, M.L.; Lee, J.C. Elastostatically induced structural disordering in amorphous alloys. Acta Mater. 2008, 56, 5440. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Louzguine-Luzgin, D.V.; Louzguina-Luzgina, L.V.; Churyumov, A.Y. Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses. Metals 2013, 3, 1-22. https://doi.org/10.3390/met3010001
Louzguine-Luzgin DV, Louzguina-Luzgina LV, Churyumov AY. Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses. Metals. 2013; 3(1):1-22. https://doi.org/10.3390/met3010001
Chicago/Turabian StyleLouzguine-Luzgin, Dmitri V., Larissa V. Louzguina-Luzgina, and Alexander Yu. Churyumov. 2013. "Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses" Metals 3, no. 1: 1-22. https://doi.org/10.3390/met3010001
APA StyleLouzguine-Luzgin, D. V., Louzguina-Luzgina, L. V., & Churyumov, A. Y. (2013). Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses. Metals, 3(1), 1-22. https://doi.org/10.3390/met3010001