Softening and Melting Behavior of Lead Blast Furnace Slags
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Softening-Melting Method
3. Thermodynamic Analysis
3.1. Pseudoternary Phase Diagrams
- (a)
- Determine the amount of Zn and Fe in the FexZnyO species from Table 1 using slag A1:
- (b)
- Determine the sum of the species CaO, SiO2, and Fe0.63Zn0.37O:
- (c)
- Recalculate the quantities of all species, considering that CaO + SiO2 + Fe0.63Zn0.37O corresponds to 100%: Xi = mi/SUM, where mi and Xi represent the mass and mass fraction of each species in the slag, respectively:
3.2. Crystallization Curves
4. Experimental Results and Discussion
4.1. Characteristic Temperatures
4.2. XRD Results
4.3. SEM-EDS Results
4.4. DSC Results
5. Conclusions
- The pseudoternary phase diagrams and crystalline curves calculated by FactSage can help estimate the effect of composition parameters on characteristic temperatures, as well as the crystalline phases formed during cooling.
- The solidus and liquidus temperatures were considered to correspond to the deformation temperature (DT) and the temperature at 75% shrinkage of the sample, respectively. The temperatures calculated by FactSage differed from the experimental values by about 70 °C for both the solidus and liquidus temperatures.
- The phase evolution obtained by XRD, SEM, and DSC was consistent with the results calculated by FactSage. Spinel was the first crystalline phase to solidify, followed by melilite and andradite.
- The liquidus temperature increases as the slag basicity (CaO/SiO2) decreases, whereas the liquidus temperature increases as the Fe/SiO2 ratio or Zn content increases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, R. The Extractive Metallurgy of Lead; The Australasian Institute of Mining and Metallurgy: Carlton, Australia, 2009; pp. 72–75. [Google Scholar]
- Habashi, F. Handbook of Extractive Metallurgy; Wiley-VCH: Weinheim, Germany, 1997; Volume 2, pp. 591–596. [Google Scholar]
- Nowinska, K.; Adamczyk, Z. Zinc and lead metallurgical slags as a potential source of metal recovery: A review. Materials 2023, 16, 7295. [Google Scholar] [CrossRef]
- Andersson, A.; Isaksson, J.; Lennartsson, A.; Roos, A.; Engström, F. The role of FeO/SiO2 ratio in valorizing iron silicate slags as supplementary cementitious materials. J. Sustain. Metall. 2025, 11, 657–669. [Google Scholar] [CrossRef]
- Isaksson, J.; Andersson, A.; Lennartsson, A.; Gyakwaa, F.; Shu, Q.; Samuelsson, C. Effect of FeO/SiO2 ratio, Al2O3, and CaO content on viscosity and ionic structure in FeO-SiO2-Al2O3-CaO-MgO-Cr2O3 melts. Metall. Mater. Trans. B 2025, 56, 2573–2586. [Google Scholar] [CrossRef]
- Chiu, Y.-N.; Chang, K.-C.; Tsai, W.-C.; Hu, Y.-J.; Shiau, J.-S.; Lu, K.-M.; Huang, T.-Y.; Du, S.-W.; Cheng, P.-C.; Kuo, Y.-C.; et al. Revisiting the softening and melting behavior of sinter under simulated blast furnace conditions: Part II—Characteristics of microstructure evolution and grain coarsening. J. Taiwan Inst. Chem. Eng. 2025, 171, 106066. [Google Scholar] [CrossRef]
- Xin, R.; Zhao, J.; Gao, X.; You, Z.; Yu, W.; Zhang, S.; Dang, J.; Bai, C. Softening-melting properties and slag evolution of vanadium titano-magnetite sinter in hydrogen-rich gases. Crystals 2023, 13, 210. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, J. Relationship between slag phase and softening & melting properties of cohesive zone. ISIJ Int. 2023, 63, 1919–1922. [Google Scholar] [CrossRef]
- Kamireddy, V.; Wang, D.; Pan, W.; Chen, S.; Evans, T.; Tang, F.; Zhao, B.; Ma, X. Liquid formation in sinters and its correlation with softening behaviour. Metals 2022, 12, 885. [Google Scholar] [CrossRef]
- Huang, Q.; Min, X.; Chai, L.; Li, Y.; Wang, Y.; Ke, Y.; Peng, C.; Ku, H.; Lu, J.; Wang, X. Melting properties and bath reduction of high-Zn materials for zinc and lead recovery. J. Alloys Compd. 2025, 1022, 179783. [Google Scholar] [CrossRef]
- Fan, K.; Jiang, X.; Zhang, X.; Wang, Q.; Gao, Q.; Zheng, H.; Shen, F. Investigation of the testing method of softening-melting properties of iron-bearing materials. Minerals 2024, 14, 1214. [Google Scholar] [CrossRef]
- Mohanty, U.K.; Behera, R.C. Fusion behaviour of synthetic aluminothermic ferro-chrome slags. ISIJ Int. 2003, 43, 1875–1881. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Cai, D.; Zhang, J.; Sasaki, Y.; Ostrovski, O. Effects of CaO/SiO2 ratio and Na2O content on melting properties and viscosity of SiO2-CaO-Al2O3-B2O3-Na2O mold fluxes. Metall. Mater. Trans. B 2017, 48, 516–526. [Google Scholar] [CrossRef]
- Wang, G.-L.; Kang, J.; Zhang, J.-L.; Wang, Y.-Z.; Wang, Z.-Y.; Liu, Z.-J.; Xu, C.-Y. Softening-melting behavior of mixed burden based on low-magnesium sinter and fluxed pellets. Int. J. Miner. Met. Mater. 2021, 28, 621–628. [Google Scholar] [CrossRef]
- Barret, N.; Mitra, S.; Doostmohammadi, H.; O’Dea, D.; Zulli, P.; Chew, S.; Honeyands, T. Development of softening and melting testing conditions simulating blast furnace operation with hydrogen injection. Ironmak. Steelmak. 2023, 50, 1248–1259. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Sun, C.; Yang, S.; Wang, Q. The effect of MgO and Al2O3 content in sinter on the softening-melting properties of mixed ferrous burden. Materials 2023, 16, 5490. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J.; Sasaki, Y.; Ostrovski, O.; Zhang, C.; Cai, D.; Kashiwaya, Y. Crystallization behavior and heat transfer of fluorine-free mold fluxes with different Na2O concentration. Metall. Mater. Trans. B 2016, 47, 2447–2458. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Zhou, L.; Pan, Z. Effect of Al2O3 and MgO on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux. J. Iron Steel Res. Int. 2020, 28, 552–562. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Zhou, K. Viscosity and crystallization behavior of F-free mold flux for casting medium carbon steels. ISIJ Int. 2015, 55, 1916–1924. [Google Scholar] [CrossRef]
- Wang, Z.; Shu, Q.; Chou, K. Crystallization kinetics and structure of mold fluxes with SiO2 being substituted by TiO2 for casting of titanium-stabilized stainless steel. Metall. Mater. Trans. B 2013, 44, 606–613. [Google Scholar] [CrossRef]
- Seo, M.; Shi, C.-B.; Cho, J.-W.; Kim, S.-H. Crystallization behaviors of CaO-SiO2-Al2O3-Na2O-CaF2-(Li2O-B2O3) mold fluxes. Metall. Mater. Trans. B 2014, 45, 1874–1886. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. Reprint of: FactSage Thermochemical Software and Databases, 2010–2016. Calphad 2016, 55, 1–19. [Google Scholar] [CrossRef]
- Jak, E.; Hayes, P.C. Experimental study of phase equilibria in the PbO-ZnO-“Fe2O3”-CaO-SiO2 system in air for high lead smelting slags (CaO/SiO2 = 0.35 and PbO/(CaO + SiO2) = 5.0 by weight). Metall. Mater. Trans. B 2002, 33, 817–825. [Google Scholar] [CrossRef]
- Jak, E.; Kondratiev, A.; Christie, S.; Hayes, P.C. The prediction and representation of phase equilibria and physicochemical properties in complex slag systems. Metall. Mater. Trans. B 2003, 34, 595–603. [Google Scholar] [CrossRef]
- Flores-Favela, M.; Pelaez-Ramirez, H.; López-Rodriguez, J.; Romero-Serrano, A.; Hernández-Ramírez, A.; Cruz-Ramírez, A.; Almaguer-Guzman, I. Effect of CaO/SiO2 and Fe/SiO2 ratios on the viscosity at 1300 °C of partly crystallized silicate slags. Glass Phys. Chem. 2021, 47, 75–82. [Google Scholar] [CrossRef]
- DIN 51730; Testing of Solid Fuels—Determination of Ash Fusibility. DIN: Berlin, Germany, 2022. Available online: https://www.dincodes.com/product/din-51730/ (accessed on 21 January 2025).











| Sample | Parameter | CaO | SiO2 | MgO | Al2O3 | Fe | Zn | Cu | Pb | S | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A1 | Low-CaO/SiO2 | 1.04 | 1.12 | 20.3 | 19.6 | 1.5 | 3.13 | 21.9 | 12.66 | 0.59 | 1.03 | 4.0 |
| A2 | High-CaO/SiO2 | 1.19 | 1.12 | 22.6 | 19.0 | 1.5 | 3.02 | 21.3 | 12.38 | 0.71 | 0.88 | 4.2 |
| B1 | Low-Fe/SiO2 | 1.11 | 0.93 | 24.92 | 22.39 | 1.48 | 2.07 | 20.91 | 11.83 | 0.45 | 1.73 | 4.1 |
| B2 | High-Fe/SiO2 | 1.13 | 1.39 | 18.43 | 16.29 | 1.47 | 1.87 | 22.63 | 10.84 | 0.54 | 0.99 | 4.2 |
| C1 | Low-Zn | 1.12 | 1.17 | 22.2 | 19.9 | 1.45 | 3.37 | 23.3 | 7.88 | 0.53 | 0.67 | 3.8 |
| C2 | High-Zn | 1.12 | 1.04 | 21.9 | 19.6 | 1.46 | 3.25 | 20.3 | 13.59 | 0.59 | 0.77 | 4.0 |
| Sample | Parameter | CaO | SiO2 | MgO | Al2O3 | FeO | ZnO | Cu2O | PbO |
|---|---|---|---|---|---|---|---|---|---|
| A1 | Low-CaO/SiO2 | 20.3 | 19.6 | 1.5 | 3.13 | 28.2 | 15.76 | 0.66 | 1.11 |
| A2 | High-CaO/SiO2 | 22.6 | 19.0 | 1.5 | 3.02 | 27.4 | 15.41 | 0.80 | 0.95 |
| B1 | Low-Fe/SiO2 | 24.92 | 22.39 | 1.48 | 2.07 | 26.90 | 14.72 | 0.51 | 1.86 |
| B2 | High-Fe/SiO2 | 18.43 | 16.29 | 1.47 | 1.87 | 29.11 | 13.49 | 0.61 | 1.07 |
| C1 | Low-Zn | 22.2 | 19.9 | 1.45 | 3.37 | 29.97 | 9.81 | 0.60 | 0.72 |
| C2 | High-Zn | 21.9 | 19.6 | 1.46 | 3.25 | 26.12 | 16.92 | 0.66 | 0.83 |
| Sample | Solidus (°C) | Liquidus (°C) | ||
|---|---|---|---|---|
| Experimental | Calculated | Experimental | Calculated | |
| A1 | 1205 | 1150 | 1420 | 1485 |
| A2 | 1200 | 1150 | 1400 | 1470 |
| B1 | 1205 | 1135 | 1400 | 1450 |
| B2 | 1190 | 1140 | 1430 | 1495 |
| C1 | 1190 | 1175 | 1385 | 1460 |
| C2 | 1210 | 1150 | 1425 | 1480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
López-Rodríguez, J.; Jiménez-Lugos, C.; Flores-Favela, M.; Hernández-Ramírez, A.; Cruz-Ramírez, A.; Martínez-Morales, C.; Pérez-Labra, M.; Romero-Serrano, A. Softening and Melting Behavior of Lead Blast Furnace Slags. Metals 2026, 16, 104. https://doi.org/10.3390/met16010104
López-Rodríguez J, Jiménez-Lugos C, Flores-Favela M, Hernández-Ramírez A, Cruz-Ramírez A, Martínez-Morales C, Pérez-Labra M, Romero-Serrano A. Softening and Melting Behavior of Lead Blast Furnace Slags. Metals. 2026; 16(1):104. https://doi.org/10.3390/met16010104
Chicago/Turabian StyleLópez-Rodríguez, Josué, Cancio Jiménez-Lugos, Manuel Flores-Favela, Aurelio Hernández-Ramírez, Alejandro Cruz-Ramírez, Carmen Martínez-Morales, Miguel Pérez-Labra, and Antonio Romero-Serrano. 2026. "Softening and Melting Behavior of Lead Blast Furnace Slags" Metals 16, no. 1: 104. https://doi.org/10.3390/met16010104
APA StyleLópez-Rodríguez, J., Jiménez-Lugos, C., Flores-Favela, M., Hernández-Ramírez, A., Cruz-Ramírez, A., Martínez-Morales, C., Pérez-Labra, M., & Romero-Serrano, A. (2026). Softening and Melting Behavior of Lead Blast Furnace Slags. Metals, 16(1), 104. https://doi.org/10.3390/met16010104

