Internal SEN Design and Its Influence on Fluid Dynamics in Slab Molds: A Combined Numerical and Experimental Analysis
Abstract
1. Introduction
Case Study
2. Materials and Methods
2.1. Description of the Physical Model
2.2. Description of Physical Experiments
2.3. Description of Numerical Model
2.3.1. The Realizable k- Model
2.3.2. The Volume of Fluid (VOF)
2.3.3. Numerical Procedure
3. Results and Discussion
3.1. General Flow Pattern
3.2. Velocities at Sub-Meniscus Region
3.3. Free Surface Behavior
3.4. Comparative Analysis of SEN Performance at Different Casting Speeds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. 96th Session of the Steel Committee: Statement by the Chair. Available online: https://www.oecd.org/en/about/news/speech-statements/2024/11/96th-session-of-the-steel-committee-statement-by-the-chair.html#top (accessed on 15 July 2025).
- Calderon-Ramos, I.; Morales, R.D. Influence of Turbulent Flows in the Nozzle on Melt Flow Within a Slab Mold and Stability of the Metal–Flux Interface. Metall. Mater. Trans. B 2016, 47, 1866–1881. [Google Scholar] [CrossRef]
- Guthrie, R.I.L.; Isac, M.M. Continuous Casting Practices for Steel: Past, Present and Future. Metals 2022, 12, 862. [Google Scholar] [CrossRef]
- González-Solórzano, M.G.; Morales, R.D. Physical Modeling and Mathematical Modeling Using the Scale-Adaptive Simulation Model of Nozzle Design Effects on the Flow Structure in a Slab Mold. Steel Res. Int. 2022, 93, 251–268. [Google Scholar] [CrossRef]
- Javurek, M.; Wincor, R. Bubbly Mold Flow in Continuous Casting: Comparison of Numerical Flow Simulations with Water Model Measurements. Steel Res. Int. 2020, 91, 2000415. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Ma, H.; Zhou, Y.; Ma, J.; Zhao, J.; Chen, Z.; Zhao, Y.; Shi, Z. Study on Mold Flux Entrapment by Numerical Simulation, Water Modeling, and High-Temperature Quantitative Velocity Measurement. Steel Res. Int. 2025, 1, 2401066. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, H.; Wang, G.; Xu, L.; Qiu, S.; Zhu, R. Numerical Modeling of Transient Flow Characteristics on the Top Surface of a Steel Slab Continuous Casting Strand Using a Large Eddy Simulation Combined with Volume of Fluid Model. Materials 2023, 16, 5665. [Google Scholar] [CrossRef]
- Hua, C.; Wang, D.; Guan, J.; Zhang, H.; Hu, X.; Ren, Z.; Li, Y. Particle Image Velocimetry Measurements and Numerical Simulation of the Flow and Vortex in a Hydraulic Mountain-Bottom Submerged Entry Nozzle. Steel Res. Int. 2025, 96, 2400893. [Google Scholar] [CrossRef]
- Rao, P.M.; Chougale, V.V.; Kumar, S.D.; Rajendra, T.; Balachandran, D. Effect of SEN Immersion Depth on Mold Flow Profile and Slag Entrapment During Continuous Steel Casting. Metall. Mater. Eng. 2022, 27, 557–573. [Google Scholar] [CrossRef]
- Thomas, B.G. Review on Modeling and Simulation of Continuous Casting. Steel Res. Int. 2017, 89, 1700312. [Google Scholar] [CrossRef]
- Chaudhary, R.; Lee, G.-G.; Thomas, B.G.; Cho, S.-M.; Kim, S.-H.; Kwon, O.-D. Effect of Stopper-Rod Misalignment on Fluid Flow in Continuous Casting of Steel. Metall. Mater. Trans. B 2011, 42, 300–315. [Google Scholar] [CrossRef]
- Ling, H.; Xu, R.; Wang, H.; Chang, L.; Qiu, S. Multiphase Flow Behavior in a Single-Strand Continuous Casting Tundish during Ladle Change. ISIJ Int. 2020, 60, 499–508. [Google Scholar] [CrossRef]
- Lu, H.; Li, B.; Li, J.; Zhong, Y.; Ren, Z.; Lei, Z. Numerical Simulation of In-mold Electromagnetic Stirring on Slide Gate Caused Bias Flow and Solidification in Slab Continuous Casting. ISIJ Int. 2021, 61, 1860–1871. [Google Scholar] [CrossRef]
- Vakhrushev, A.; Kharicha, A.; Liu, Z.; Wu, M.; Ludwig, A.; Nitzl, G.; Tang, Y.; Hackl, G.; Watzinger, J. Electric Current Distribution During Electromagnetic Braking in Continuous Casting. Metall. Mater. Trans. B 2020, 51, 2811–2828. [Google Scholar] [CrossRef]
- Li, B.; Okane, T.; Umeda, T. Modeling of Biased Flow Phenomena Associated with the Effects of Static Magnetic-Field Application and Argon Gas Injection in Slab Continuous Casting of Steel. Metall. Mater. Trans. B 2001, 32, 1053–1066. [Google Scholar] [CrossRef]
- Chang, S.; Ping, C.; Lai, Q.; Song, H.; Zhao, J.; Zou, Z.; Li, B. Effect of Nozzle Clogging on Bubble Movements and Slag Behaviors in a Slab Mold. Metall. Mater. Trans. B 2024, 55, 836–847. [Google Scholar] [CrossRef]
- Singh, V.; Dash, S.K.; Sunitha, J.S.; Ajmani, S.K.; Das, A.K. Experimental Simulation and Mathematical Modeling of Air Bubble Movement in Slab Caster Mold. ISIJ Int. 2006, 46, 210–218. [Google Scholar] [CrossRef]
- Cheng, C.; Lu, H.; Li, Y.; Qing, X.; Jin, Y. Mathematical Modeling of Flow and Heat Transfer Behavior of Liquid Slag in Continuous Casting Mold with Argon Blowing. ISIJ Int. 2019, 59, 1266–1275. [Google Scholar] [CrossRef]
- Barati, H.; Wu, M.; Kharicha, A.; Ludwig, A. A Transient Model for Nozzle Clogging. Powder Technol. 2018, 329, 181–198. [Google Scholar] [CrossRef]
- Rackers, K.G.; Thomas, B.G. Clogging in Continuous Casting Nozzles. In Proceedings of the 78th Steelmaking Conference, Nashville, TN, USA, 2 April 1995; Iron and Steel Society: Warrendale, PA, USA, 1995; Volume 78, pp. 723–734. Available online: https://ccc.illinois.edu/PDF%20Files/Publications/95_ISS%5b1%5d.Conf.paper_post.pdf (accessed on 15 March 2025).
- Smirnov, A.N.; Efimova, V.G.; Verzilov, A.P.; Maksaev, E.N. Clogging of Submersible Nozzles in Continuous Slab Casting Machines. Steel Transl. 2014, 44, 833–837. [Google Scholar] [CrossRef]
- Bai, H.; Thomas, B.G. Effects of Clogging, Argon Injection, and Continuous Casting Conditions on Flow and Air Aspiration in Submerged Entry Nozzles. Metall. Mater. Trans. B 2001, 32, 707–722. [Google Scholar] [CrossRef]
- González-Solórzano, M.G.; Morales, R.D.; Gutiérrez, E.; Guarneros, J.; Chattopadhyay, K. Analysis of Fluid Flow of Liquid Steel through Clogged Nozzles: Thermodynamic Analysis and Flow Simulations. Steel Res. Int. 2020, 91, 2000049. [Google Scholar] [CrossRef]
- Yamamura, H.; Kajitani, T.; Nakashima, J.; Yamasaki, N.; Mineta, S. Clarification and Control of the Heat Transfer Phenomena in the Mold and Strand of Continuous Casting Machines. Nippon Steel Tech. Rep. 2013, 104, 54–61. Available online: https://www.nipponsteel.com/en/tech/report/nsc/pdf/104-10.pdf (accessed on 26 November 2024).
- Wang, Z.; Liu, J.; Cui, H. Effect of SEN Asymmetric Clogging on Mold Level Fluctuation and Mold Slag Distribution During Continuous Casting. Metall. Mater. Trans. B 2024, 55, 2932–2947. [Google Scholar] [CrossRef]
- Suni, J.P.; Henein, H. Analysis of Shell Thickness Irregularity in Continuously Cast Middle Carbon Steel Slabs Using Mold Thermocouple Data. Metall. Mater. Trans. B 1996, 27, 1045–1056. [Google Scholar] [CrossRef]
- Yu, S.; Long, M.; Chen, D.; Fan, H.; Yu, H.; Duan, H.; Xie, X.; Liu, T. Effect of the Mold Corner Structure on the Friction Behavior in Slab Continuous Casting Molds. J. Mater. Process. Technol. 2019, 270, 157–167. [Google Scholar] [CrossRef]
- Kajitani, T.; Kato, Y.; Harada, K.; Saito, K.; Harashima, K.; Yamada, W. Mechanism of a Hydrogen-induced Sticker Breakout-Toshiyuki. ISIJ Int. 2008, 48, 1215–1224. [Google Scholar] [CrossRef]
- Cho, S.M.; Thomas, B.G. Electromagnetic Forces in Continuous Casting of Steel Slabs. Metals 2019, 9, 471. [Google Scholar] [CrossRef]
- Tuttle, R.B.; Smith, J.D.; Peaslee, K.D. Casting Simulation of Calcium Titanate and Calcium Zirconate Nozzles for Continuous Casting of Aluminum-killed Steels. Metall. Mater. Trans. B 2007, 38, 101–108. [Google Scholar] [CrossRef]
- Yang, H.; Vanka, S.P.; Thomas, B.G. Modeling Argon Gas Behavior in Continuous Casting of Steel. JOM 2018, 70, 2148–2156. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Barreto, J.d.J.; Garcia-Hernandez, S.; Morales, R.; González-Solorzano, M.G. Decrease of Nozzle Clogging Through Fluid Flow Control. Metals 2020, 10, 1420. [Google Scholar] [CrossRef]
- Yang, W.; He, P.; Chang, L.; Li, T.; Bai, X.; Luo, Z.; Zhao, N.; Liu, Q. Numerical Analysis of Slag–Steel–Air Four-Phase Flow in Steel Continuous Casting Model Using CFD-DBM-VOF Model. Metals 2023, 13, 1943. [Google Scholar] [CrossRef]
- Gonzalez-Trejo, J.; Miranda-Tello, R.; Gabbasov, R.; Real-Ramirez, C.A.; Cervantes-De-La-Torre, F. Experimental Analysis of the Influence of the Sliding-Gate Valve on Submerged Entry Nozzle Outlet Jets. Fluids 2024, 9, 30. [Google Scholar] [CrossRef]
- Li, Y.; He, W.; Zhao, C.; Liu, J.; Yang, Z.; Zhao, Y.; Yang, J. Mathematical Modeling of Transient Submerged Entry Nozzle Clogging and Its Effect on Flow Field, Bubble Distribution and Interface Fluctuation in Slab Continuous Casting Mold. Metals 2024, 14, 742. [Google Scholar] [CrossRef]
- Deng, N.; Duan, J.; Li, Y.; Gao, Q.; Deng, Y.; Ni, W. Optimization Design of Submerged-Entry-Nozzle Structure Using NSGA-II Genetic Algorithm in Ultra-Large Beam-Blank Continuous-Casting Molds. Materials 2024, 17, 4346. [Google Scholar] [CrossRef]
- Arcos-Gutierrez, H.; Barrera-Cardiel, G.; Barreto, J.d.J.; Garcia-Hernandez, S. Numerical Study of Internal SEN Design Effects on Jet Oscillatios in a Funnel Thin Slab Caster. ISIJ Int. 2014, 54, 1304–1313. [Google Scholar] [CrossRef]
- Chatterjee, D. CFD Model Study of a New Four-Ports Submerged Entry Nozzle for Decreasing the Turbulence in Slab Casting Mold. ISRN Met. 2013, 2013, 981597. [Google Scholar] [CrossRef]
- Sen, A.; Prasad, B.; Sahu, J.K.; Tiwari, J.N. Design of Sub-Entry Nozzle for Casting Defect-Free Steel. IOP Conf. Ser. Mater. Sci. Eng. 2015, 75, 012006. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, T.; Tang, G.; Gu, Y.; Cui, H. Water Model Study on the Flotation Behaviors of Inclusion Clusters in Molten Steel. ISIJ Int. 2022, 62, 1408–1417. [Google Scholar] [CrossRef]
- Morales, R.D.; Palafox-Ramos, J.; Garcia-Demedices, L.; Sanchez-Perez, R. A DPIV Study of Liquid Steel Flow in a Wide Thin Slab Caster Using Four Ports Submerged Entry Nozzles. ISIJ Int. 2004, 8, 1384–1392. [Google Scholar] [CrossRef]
- Xu, R.; Ling, H.; Tian, X.; Ren, L.; Chang, L.; Qiu, S. Effect of Submerged Entry Nozzle Structure on Fluid Flow, Slag Entrainment, and Solidification Process in a Slab Continuous Casting Mold. ISIJ Int. 2024, 64, 1010–1018. [Google Scholar] [CrossRef]
- Bielnicki, M.; Jowsa, J. Physical Modeling of Mold Slag Entrainment in Continuous Steel Casting Mold with Consideration the Impact of Mold Powder Layer. Steel Res. Int. 2018, 89, 1800110. [Google Scholar] [CrossRef]
- Damle, C.; Sahai, Y. The Effect of Tracer Density on Melt Flow Characterization in Continuous Casting Tundishes–A Modeling Study. ISIJ Int. 1995, 35, 163–169. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. J. Comp. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Sola, J.; Díaz, G.; Brandaleze, E. Computational Simulation Study on Slab Steel Continuous Casting Fluid Dynamics to Avoid Mold Flux Entrapment. Int. J. Eng. Res. Technol. 2023, 12, 143–151. Available online: https://www.ijert.org/research/computational-simulation-study-on-slab-steel-continuous-casting-fluid-dynamics-to-avoid-mold-flux-entrapment-IJERTV12IS020084.pdf (accessed on 25 March 2025).
- Ansys Inc. FLUENT 6.2, User’s Guide; Centerra Resource: Lebanon, NH, USA, 2024; p. 51. [Google Scholar]
- Cho, S.-M.; Thomas, B.G.; Kim, S.-H. Effect of Nozzle Port Angle on Transient Flow and Surface Salg Behavior During Continuous Steel-Slab Casting. Metall. Mater. Trans. B 2019, 50, 52–76. [Google Scholar] [CrossRef]
- Du, F.; Zeng, Y.; Wang, S.; Zheng, G. Analysis of Flow and Fluctuation Characteristics in Coated Slag Using a 2D Model in the Meniscus Region of Mold. Coatings 2023, 13, 1678. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, J. Mathematical Modeling on Transient Multiphase Flow and Slag Entrainment in Continuously Casting Mold with Double-ruler EMBr through LES+VOF+DPM Method. ISIJ Int. 2021, 61, 853–864. [Google Scholar] [CrossRef]
- Real-Ramirez, C.A.; Carvajal-Mariscal, I.; Sanchez-Silva, F.; la Torre, F.C.-D.; Miranda-Tello, J.R.; Gabbasov, R.; Gonzalez-Trejo, J.I. Visualization and Measurement of Turbulent Flow Inside a Submerged Entry Nozzle and Off the Ports. Rev. Mex. Fis. 2021, 67, 040601. [Google Scholar] [CrossRef]
- Cedillo Hernández, V.H. Effects of the Feeding System on the Dynamics of Liquid Steel in Slab Molds. Doctoral Thesis, National Polytechnic Institute (IPN), Mexico City, Mexico, 2017. [Google Scholar]
- Hibbeler, L.C.; Thomas, B.G. Mold Slag Entrainment Mechanisms in Continuous Casting Molds. In Proceedings of the Iron and Steel Technology Conference, AISTech, Pittsburgh, PA, USA, 9 May 2013; pp. 1215–1230. Available online: https://experts.illinois.edu/en/publications/mold-slag-entrainment-mechanisms-in-continuous-casting-molds (accessed on 25 March 2025).
- Iguchi, M.; Yoshida, J.; Shimizu, T.; Mizuno, Y. Model study on the entrapment of mold powder into molten steel. ISIJ Int. 2000, 40, 685–691. [Google Scholar] [CrossRef]
- Kasai, N.; Iguchi, M. Water-model Experiment on Melting Powder Trapping by Vortex in the Continuous Casting Mold. ISIJ Int. 2007, 47, 982–987. [Google Scholar] [CrossRef]
- Li, Y.; He, W.; Zhao, C. Numerical Simulation of Mold Flux Entrapment in Slab CC Mold Under Double-Ruler EMBr Condition Assisted with High-Temperature Quantitative Velocity Measurement. Metall. Mater. Trans. B 2025, 2025, 1–18. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, S.; Cho, H.-J.; Park, I.S. Vortex Core Phenomenon in Continuous Casting Mold. Trans. Korean Soc. Mech. Eng. B 2021, 45, 351–356. [Google Scholar] [CrossRef]
- Cho, S.-M.; Thomas, B.G. Electromagnetic Effects on Solidification Defect Formation in Continuous Steel Casting. JOM 2020, 72, 3610–3627. [Google Scholar] [CrossRef]
- Vakhrushev, A.; Karimi-Sibaki, E.; Wu, M.; Al Nasser, M.; Hackl, G.; Tang, Y.; Watzinger, J.; Boháček, J.; Kharicha, A. Magnetohydrodynamics Phenomena in Continuous Casting Process Under Applied Electromagnetic Braking (EMBr). Int. J. Thermo. 2025, 28, 101315. [Google Scholar] [CrossRef]
No. Case | Design | Casting Speed | No. Case | Design | Casting Speed |
---|---|---|---|---|---|
Case 1 | SEN-1 | 0.9 m/min | Case 4 | SEN-2 | 0.9 m/min |
Case 2 | SEN-1 | 1.2 m/min | Case 5 | SEN-2 | 1.2 m/min |
Case 3 | SEN-1 | 1.4 m/min | Case 6 | SEN-2 | 1.4 m/min |
No. CASE | Speed Casting | Mass Flow Rate | Turbulent Kinetic Energy, | Turbulent Dissipation Rate, | |
---|---|---|---|---|---|
CASE 1 | 0.9 | 36.2892 | 0.12 | 7 | 1.91293118 |
CASE 2 | 1.2 | 43.3865 | 0.22 | 14.8 | 2.45520205 |
CASE 3 | 1.4 | 55.6403 | 0.27 | 22 | 2.80203933 |
CASE 4 | 0.9 | 36.2892 | 0.08 | 3.5 | 1.51829449 |
CASE 5 | 1.2 | 43.3865 | 0.15 | 8.2 | 2.01652968 |
CASE 6 | 1.4 | 55.6403 | 0.20 | 12.3 | 2.30835024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Cardona, E.; Calderon-Ramos, I.; Morales Dávila, R.; Servín-Castañeda, R.; Pérez-Alvarado, A.; Arreola-Villa, S.A.; Méndez-Gordillo, A.R.; García-Hernández, S. Internal SEN Design and Its Influence on Fluid Dynamics in Slab Molds: A Combined Numerical and Experimental Analysis. Metals 2025, 15, 1043. https://doi.org/10.3390/met15091043
Ramos-Cardona E, Calderon-Ramos I, Morales Dávila R, Servín-Castañeda R, Pérez-Alvarado A, Arreola-Villa SA, Méndez-Gordillo AR, García-Hernández S. Internal SEN Design and Its Influence on Fluid Dynamics in Slab Molds: A Combined Numerical and Experimental Analysis. Metals. 2025; 15(9):1043. https://doi.org/10.3390/met15091043
Chicago/Turabian StyleRamos-Cardona, Edith, Ismael Calderon-Ramos, Rodolfo Morales Dávila, Rumualdo Servín-Castañeda, Alejandro Pérez-Alvarado, Sixtos A. Arreola-Villa, Alma R. Méndez-Gordillo, and Saúl García-Hernández. 2025. "Internal SEN Design and Its Influence on Fluid Dynamics in Slab Molds: A Combined Numerical and Experimental Analysis" Metals 15, no. 9: 1043. https://doi.org/10.3390/met15091043
APA StyleRamos-Cardona, E., Calderon-Ramos, I., Morales Dávila, R., Servín-Castañeda, R., Pérez-Alvarado, A., Arreola-Villa, S. A., Méndez-Gordillo, A. R., & García-Hernández, S. (2025). Internal SEN Design and Its Influence on Fluid Dynamics in Slab Molds: A Combined Numerical and Experimental Analysis. Metals, 15(9), 1043. https://doi.org/10.3390/met15091043