Investigating the Effect of Calcium Addition on the Microstructural and Mechanical Properties of a Zn-Al-Cu-Mg Alloy via Squeeze Casting
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of Alloy and Precursors
2.2. Characterization of Squeeze Cast Zn-Al-Cu-Mg Alloy with Reinforced Ca
3. Results and Discussion
3.1. Alloy Integrity
3.2. Microstructural Examination and SEM with EDS Analysis
3.3. Phase Identification (XRD Analysis)
3.4. Mechanical Properties
3.5. Fracture Surfaces Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; Sandlöbes, S.; Wu, L.; Hu, W.; Gottstein, G.; Korte-Kerzel, S. Mechanical Behaviour of Zn–Al–Cu–Mg Alloys: Deformation Mechanisms of as-Cast Microstructures. Mater. Sci. Eng. A 2016, 651, 675–687. [Google Scholar] [CrossRef]
- Neres da Silva, N.A.; Pereira, P.H.R.; Siqueira Corrêa, E.C.; Paulino Aguilar, M.T.; Cetlin, P.R. Microstructural Evolution and Mechanical Properties in a Zn–Al–Cu–Mg Hypoeutectic Alloy Processed by Multi-Directional Forging at Room Temperature. Mater. Sci. Eng. A 2021, 801, 140420. [Google Scholar] [CrossRef]
- Xiao, Y.; Cai, Y.; Yao, W.; Zhuang, D.; Chen, F.; Li, T.; Zhong, Y.; Luo, C.; Chen, W.; Lyu, Z.; et al. Developing High Elongation of Ca-Containing Zn Alloys with Superior Osteogenic and Antibacterial Properties. J. Alloys Compd. 2025, 1010, 176988. [Google Scholar] [CrossRef]
- Luqman, M.; Ali, Y.; Zaghloul, M.M.Y.; Sheikh, F.A.; Chan, V.; Abdal-hay, A. Grain Refinement Mechanism and Its Effect on Mechanical Properties and Biodegradation Behaviors of Zn Alloys—A Review. J. Mater. Res. Technol. 2023, 24, 7338–7365. [Google Scholar] [CrossRef]
- Abou El-khair, M.T.; Daoud, A.; Ismail, A. Effect of Different Al Contents on the Microstructure, Tensile and Wear Properties of Zn-Based Alloy. Mater. Lett. 2004, 58, 1754–1760. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Wang, C.; Cao, S.; Bai, W.; Wu, C.; Qian, J. Effect of Al Content on Microstructure and Properties of Zn-Cu-Al Alloy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 746, 012018. [Google Scholar] [CrossRef]
- Sun, S.; Yu, J.; Wang, C. Effect of Al or Cu Content on Microstructure and Mechanical Properties of Zn Alloys Fabricated Using Continuous Casting and Extrusion. Metals 2024, 14, 888. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, G.; Liu, W.; Zhang, L.; Pang, S.; Wang, Y.; Ding, W. Effects of Processing Parameters and Ca Content on Microstructure and Mechanical Properties of Squeeze Casting AZ91–Ca Alloys. Mater. Sci. Eng. A 2014, 595, 109–117. [Google Scholar] [CrossRef]
- Liu, Y.; Geng, C.; Zhu, Y.; Chen, X. Effect of Sr Addition on Microstructure Evolution and Mechanical Properties of Zn 4%Al Hypoeutectic Alloy. J. Alloys Compd. 2017, 695, 443–451. [Google Scholar] [CrossRef]
- Pola, A.; Tocci, M.; Goodwin, F.E. Review of Microstructures and Properties of Zinc Alloys. Metals 2020, 10, 253. [Google Scholar] [CrossRef]
- Nie, K.; Zhu, Z.; Munroe, P.; Deng, K.; Han, J. The Effect of Zn/Ca Ratio on the Microstructure, Texture and Mechanical Properties of Dilute Mg–Zn–Ca–Mn Alloys That Exhibit Superior Strength. J. Mater. Sci. 2020, 55, 3588–3604. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, X.; Chen, B. Effects of Ca Concentration on Degradation Behavior of Zn-x Ca Alloys in Hank’s Solution. Mater. Lett. 2018, 218, 193–196. [Google Scholar] [CrossRef]
- Kong, J.; An, L.; Zheng, J.; Du, X. Effect of Zn Addition on Microstructure and Mechanical Properties of a Hypoeutectic Al–7Si-Based Alloy. Int. J. Met. 2025. [Google Scholar] [CrossRef]
- Ritapure, P.P.; Yadav, R.G.; Rasal, V.T.; Damale, A.V.; Kharde, Y.R. Comparative Review and Experimental Validation of Tribological and Mechanical Properties of Zinc Aluminium Alloy (ZA27) and Aluminium Zinc Alloy (Al-25Zn). J. Alloys Metall. Syst. 2024, 7, 100099. [Google Scholar] [CrossRef]
- Zhang, Z.; Hou, H.; Zhang, Y.; Sayed, M.E.E.; Murshed, M.N.; Samir, A.; Wu, P.; Gong, C.; Yong, H.; Song, G.; et al. Effect of Calcium Addition on the Microstructure, Mechanical Properties, and Corrosion Behavior of AZ61-Nd Alloy. Adv. Compos. Hybrid Mater. 2023, 6, 50. [Google Scholar] [CrossRef]
- Hou, C.; Qi, F.; Wang, L.; Lu, L.; Zhao, N.; She, J.; Zhou, Y.; Ouyang, X. Effects of Ca Addition on the Microstructure and Mechanical Properties of Mg–Zn–Sn–Mn Alloys. J. Mater. Res. Technol. 2023, 25, 3884–3900. [Google Scholar] [CrossRef]
- Belov, N.A.; Naumova, E.A.; Akopyan, T.K. Effect of Calcium on Structure, Phase Composition and Hardening of Al-Zn-Mg Alloys Containing up to 12wt.%Zn. Mater. Res. 2015, 18, 1384–1391. [Google Scholar] [CrossRef]
- Mondal, D.P.; Jha, N.; Badkul, A.; Das, S.; Yadav, M.S.; Jain, P. Effect of Calcium Addition on the Microstructure and Compressive Deformation Behaviour of 7178 Aluminium Alloy. Mater. Des. 2011, 32, 2803–2812. [Google Scholar] [CrossRef]
- Mo, W.; Zhang, L.; Wu, G.; Zhang, Y.; Liu, W.; Wang, C. Effects of Processing Parameters on Microstructure and Mechanical Properties of Squeeze-Cast Mg–12Zn–4Al–0.5Ca Alloy. Mater. Des. 2014, 63, 729–737. [Google Scholar] [CrossRef]
- Fu, T.; Ma, L.; Lu, K.; Wang, G.; Shen, H.; Guan, T. Composition Design and Performance Analysis of Zn–0.4Mg–nCa Biodegradable Alloys. J. Mater. Res. 2024, 39, 2589–2600. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Wu, Y.; Yan, K.; Ju, J.; Teng, H.; Song, D.; Jiang, J.; Bai, J. Comparative Study of the Microstructure Evolution and Mechanical Properties of Zn-0.1Mg-0.02Ca Alloy under Cold Rolling and ECAP. Mater. Sci. Eng. A 2024, 908, 146765. [Google Scholar] [CrossRef]
- Doroshenko, V.; Shurkin, P.; Sviridova, T.; Fortuna, A.; Shkaley, I. Phase Composition and Microstructure of Cast Al-6%Mg-2%Ca-2%Zn Alloy with Fe and Si Additions. Metals 2023, 13, 1584. [Google Scholar] [CrossRef]
- ASTM E92; Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2024.
- Qian, X.; Gao, Y.; Dong, Z.; Jiang, B.; He, C.; Wang, C.; Zhang, A.; Yang, B.; Zheng, C.; Pan, F. The Enhanced Zn and Ca Co-Segregation and Mechanical Properties of Mg–Zn–Ce Alloy with Micro Ca Addition. Mater. Sci. Eng. A 2023, 867, 144712. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Yu, J.; Liu, X.-F.; Zhang, H.-J.; Zhang, D.-W.; Yin, Y.-X.; Wang, L.-N. Effects of Ag, Cu or Ca Addition on Microstructure and Comprehensive Properties of Biodegradable Zn-0.8Mn Alloy. Mater. Sci. Eng. C 2019, 99, 969–978. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, D.; Wang, F.; Taylor, J.A.; Zhang, M. Effect of Grain Refinement on Tensile Properties of Cast Zinc Alloys. Metall. Mater. Trans. A 2016, 47, 830–841. [Google Scholar] [CrossRef]
- Liu, J.H.; Huang, C.X.; Wu, S.D.; Zhang, Z.F. Tensile Deformation and Fracture Behaviors of High Purity Polycrystalline Zinc. Mater. Sci. Eng. A 2008, 490, 117–125. [Google Scholar] [CrossRef]
Specimen | Al (wt.%) | Cu (wt.%) | Mg (wt.%) | Ca (wt.%) | Zn (wt.%) |
---|---|---|---|---|---|
Zn-Al-Cu-Mg (Base Alloy) | 4 | 1 | 0.05 | ... | Bal. |
Zn-Al-Cu-Mg + 0.5 wt.% Ca | 3.66 | 0.96 | 0.0443 | 0.45 | Bal. |
Zn-Al-Cu-Mg + 1.0 wt.% Ca | 3.53 | 0.95 | 0.0422 | 0.93 | Bal. |
Zn-Al-Cu-Mg + 1.5 wt.% Ca | 3.49 | 0.93 | 0.0418 | 1.36 | Bal. |
Specimen | Theoretical Density (g/cm3) | Measured Density (g/cm3) | Porosity (%) |
---|---|---|---|
Zn-Al-Cu-Mg (Base Alloy) | 6.70 | 6.65 | 0.75 |
Zn-Al-Cu-Mg + 0.5 wt.% Ca | 6.66 | 6.62 | 0.60 |
Zn-Al-Cu-Mg + 1.0 wt.% Ca | 6.61 | 6.54 | 1.07 |
Zn-Al-Cu-Mg + 1.5 wt.% Ca | 6.59 | 6.48 | 1.67 |
Phase | Peak Position () | d-Spacing (nm) | Compound Type | Observed Effect |
---|---|---|---|---|
Zn | ~36° | 0.25 | Matrix | Base alloy structure |
CaZn13 | ~43° | 0.21 | Intermetallic | Strength enhancement |
Al2Ca1Zn | ~39° | 0.23 | Intermetallic | Brittle behavior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopalakrishnan, T.; Sankaranarayanan, S.R.; Babu, S.P.K. Investigating the Effect of Calcium Addition on the Microstructural and Mechanical Properties of a Zn-Al-Cu-Mg Alloy via Squeeze Casting. Metals 2025, 15, 922. https://doi.org/10.3390/met15080922
Gopalakrishnan T, Sankaranarayanan SR, Babu SPK. Investigating the Effect of Calcium Addition on the Microstructural and Mechanical Properties of a Zn-Al-Cu-Mg Alloy via Squeeze Casting. Metals. 2025; 15(8):922. https://doi.org/10.3390/met15080922
Chicago/Turabian StyleGopalakrishnan, Thiyagesan, Sankara Raman Sankaranarayanan, and Subramanian Palani Kumaresh Babu. 2025. "Investigating the Effect of Calcium Addition on the Microstructural and Mechanical Properties of a Zn-Al-Cu-Mg Alloy via Squeeze Casting" Metals 15, no. 8: 922. https://doi.org/10.3390/met15080922
APA StyleGopalakrishnan, T., Sankaranarayanan, S. R., & Babu, S. P. K. (2025). Investigating the Effect of Calcium Addition on the Microstructural and Mechanical Properties of a Zn-Al-Cu-Mg Alloy via Squeeze Casting. Metals, 15(8), 922. https://doi.org/10.3390/met15080922