Surface Integrity Evolution and Fretting Wear Improvement of DD6 Single-Crystal Superalloy via Laser Shock Peening and Laser Shock Peening Without Coating
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Characterization Methods
3. Results and Discussion
3.1. Surface Morphology
3.2. Near-Surface Morphology
3.3. Near-Surface Microhardness
3.4. Fretting Wear Characteristics
4. Conclusions
- Due to the shock wave, plastic deformation occurs in the near-surface layer after LSP and LSPwC. High-density dislocations are formed and a slip phenomenon occurs. The deformation layer of the LSP sample is deeper, but the geometric dislocation density of LSPwC sample is larger in the near-surface 50 μm. The ablation and oxidation phenomenon occur on the surface after LSPwC, resulting in a microporous structure, forming a remelting layer of about 1 μm, and the roughness increases. There are a large number of nano-sized oxide particles in the remelted layer form dispersion strengthening.
- Compared with the untreated sample, the fretting wear resistance of DD6 after LSP and LSPwC strengthening increased by 42.8% and 59.7%, respectively. This is due to the formation of a hardened layer by strengthening, which improves the wear resistance of the surface. Work hardening and dispersion strengthening exist simultaneously after LSPwC, so the hardness and wear resistance are better. The change in roughness only affects the initial friction coefficient and has no obvious effect on the friction coefficient after stable operation.
- Compared with LSP, the maximum surface hardness of LSPwC is higher. The increase in hardness alleviates the abrasive wear caused by chip cutting and improves the plowing resistance of the material. Therefore, the wear mechanism of untreated sample and sample after LSP is adhesive wear, abrasive wear and oxidation wear; while the wear mechanism of LSPwC treated DD6 is oxidation wear and adhesive wear.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Han, Q.N.; Zhang, C.C.; Shi, H.J.; Niu, L.S.; Deng, G.J.; Rui, S.S. Effects of secondary orientation and temperature on the fretting fatigue behaviors of Ni-based single crystal superalloys. Tribol. Int. 2019, 130, 9–18. [Google Scholar] [CrossRef]
- Sun, S.; Li, L.; Yang, W.; Yue, Z.; Wan, H. RA-based fretting fatigue life prediction method of Ni-based single crystal superalloys. Tribol. Int. 2019, 134, 109–117. [Google Scholar] [CrossRef]
- Araujo, J.A.; Nowell, D. Mixed high low fretting fatigue of Ti6Al4V: Tests and modelling. Tribol. Int. 2009, 42, 1276–1285. [Google Scholar] [CrossRef]
- Golden, P.J.; Hutson, A.; Sundaram, V.; Arps, J.H. Effect of surface treatments on fretting fatigue of Ti-6Al-4V. Int. J. Fatigue 2007, 29, 1302–1310. [Google Scholar] [CrossRef]
- Han, G.; Chen, Y.; Wang, X. Flutter analysis of bending-torsion coupling of aero-engine compressor blade with assembled clearance. Appl. Math. Model. 2015, 39, 2539–2553. [Google Scholar] [CrossRef]
- Xin, L.; Huang, Q.; Han, Y.M.; Lu, Y.H.; Zhang, W.D.; Shoji, T. The damage mechanism of Alloy 690TT against Alloy 600 caused by fretting wear in room temperature pure water. Mater. Charact. 2020, 161, 110176. [Google Scholar] [CrossRef]
- Amanov, A. Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification. Wear 2020, 446, 203208. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Cao, Z.; Li, Z.; Zhou, W.; Fu, X. Effect of Laser Shock Peening on Fretting Wear Behavior of TB6 Titanium Alloy. Aer. Manuf. Technol. 2021, 64, 78–84, 101. [Google Scholar] [CrossRef]
- Rozmus-Górnikowska, M.; Kusiński, J.; Cieniek, Ł.; Morgiel, J. The Microstructure and Properties of Laser Shock Peened CMSX4 Superalloy. Metall. Mater. Trans. A 2021, 52, 2845–2858. [Google Scholar] [CrossRef]
- Lu, G.; Liu, J.; Qiao, H.; Cui, C.; Zhou, Y.; Jin, T.; Zhao, J.; Sun, X.; Hu, Z. The Local Microscale Reverse Deformation of Metallic Material under Laser Shock. Adv. Eng. Mater. 2017, 19, 1600672. [Google Scholar] [CrossRef]
- Srinivasan, S.; Garcia, D.B.; Gean, M.C.; Murthy, H.; Farris, T.N. Fretting fatigue of laser shock peened Ti-6Al-4V. Tribol. Int. 2009, 42, 1324–1329. [Google Scholar] [CrossRef]
- Mao, B.; Liao, Y.; Li, B. Abnormal twin-twin interaction in an Mg-3Al-1Zn magnesium alloy processed by laser shock peening. Scr. Mater. 2019, 165, 89–93. [Google Scholar] [CrossRef]
- Lu, G.X.; Liu, J.D.; Qiao, H.C.; Jin, T.; Sun, X.F. Crack appearance of a laser shock-treated single crystal nickel-base superalloy after isothermal fatigue failure. Surf. Coat. Technol. 2017, 321, 74–80. [Google Scholar] [CrossRef]
- Lang, M.; Zhou, G.; Luo, S.; Hu, S.; Zhang, H.; Li, Y.; Peng, R. Research Progress in Laser Shock Peening for Nickel-based Single Crystal Superalloys. China Surf. Eng. 2025, 1–20. [Google Scholar]
- Kaufman, J.; Racek, J.; Cieslar, M.; Minárik, P.; Steiner, M.A.; Mannava, S.R.; Vasudevan, V.K.; Sharma, A.; Böhm, M.; Brajer, J.; et al. The effect of laser shock peening with and without protective coating on intergranular corrosion of sensitized AA5083. Corros. Sci. 2022, 194, 109925. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Y.; Zhao, J.; Lu, Y.; Wu, J.; Qiao, H. Surface integrity evolution of a Ni-based single crystal superalloy by laser shock peening. Appl. Surf. Sci. Adv. 2021, 6, 100183. [Google Scholar] [CrossRef]
- Lu, G.X.; Liu, J.D.; Qiao, H.C.; Zhou, Y.Z.; Jin, T.; Zhao, J.B.; Sun, X.F.; Hu, Z.Q. Surface nano-hardness and microstructure of a single crystal nickel base superalloy after laser shock peening. Opt. Laser Technol. 2017, 91, 116–119. [Google Scholar] [CrossRef]
- Lu, G.X.; Liu, J.D.; Qiao, H.C.; Zhou, Y.Z.; Jin, T.; Sun, X.F.; Hu, Z.Q. Surface topography evolution of Ni-based single crystal superalloy under laser shock: Formation of the nano-scale surface reliefs. Appl. Phys. A 2017, 123, 213. [Google Scholar] [CrossRef]
- Wang, H.; Keller, S.; Chang, Y.; Kashaev, N.; Yan, K.; Gurevich, E.L.; Ostendorf, A. Effect of laser shock peening without protective coating on the surface mechanical properties of NiTi alloy. J. Alloys Compd. 2022, 896, 163011. [Google Scholar] [CrossRef]
- Luo, K.; Sun, M.; Lu, J.; Zhang, Q.; Jiang, X.; Wang, C.; Lu, J. The effect of laser shock peening with and without coating on microstructure and electrochemical corrosion behavior of AZ31b magnesium alloy. Surf. Coat. Technol. 2025, 496, 131709. [Google Scholar] [CrossRef]
- Yin, M.; Wang, W.; He, W.; Cai, Z. Impact-Sliding Tribology Behavior of TC17 Alloy Treated by Laser Shock Peening. Materials 2018, 11, 1229. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Liu, H.; Lin, C.; Zhang, Z.; Shukla, P.; Zhang, Y.; Yao, J. Improving the fretting performance of aero-engine tenon joint materials using surface strengthening. Mater. Sci. Technol. 2019, 35, 1781–1788. [Google Scholar] [CrossRef]
- Lu, G.; Liu, J.; Qiao, H.; Zhou, Y.; Jin, T.; Sun, X.; Hu, Z. Nonuniformity of morphology and mechanical properties on the surface of single crystal superalloy subjected to laser shock peening. J. Alloys Compd. 2016, 658, 721–725. [Google Scholar] [CrossRef]
- Montross, C.S.; Wei, T.; Ye, L.; Clark, G.; Mai, Y.W. Laser shock processing and its effects on microstructure and properties of metal alloys: A review. Int. J. Fatigue 2002, 24, 1021–1036. [Google Scholar] [CrossRef]
- Wang, H.; Kalchev, Y.; Wang, H.; Yan, K.; Gurevich, E.L.; Ostendorf, A. Surface modification of NiTi alloy by ultrashort pulsed laser shock peening. Surf. Coat. Technol. 2020, 394, 125899. [Google Scholar] [CrossRef]
- Geng, Y.; Mo, Y.; Zheng, H.; Li, G.; Wang, K. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750 °C. Corros. Sci. 2021, 185, 109419. [Google Scholar] [CrossRef]
- Long, H.; Mao, S.; Liu, Y.; Zhang, Z.; Han, X. Microstructural and compositional design of Ni-based single crystalline superalloysd—A review. J. Alloys Compd. 2018, 743, 203–220. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, S.; Yang, L.; Wang, Y. Effect of laser impacts on the fatigue properties of DD6 alloy. Optik 2016, 127, 11094–11101. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, Z.; Liu, J.; Zhao, J.; Liu, Z.; Lin, D.; Zhang, R.; Graber, M.J.; Thomas, N.K.; Kerek, Z.D.; et al. Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening. J. Alloys Compd. 2019, 802, 573–582. [Google Scholar] [CrossRef]
- Ming, H.; Liu, X.; Lai, J.; Wang, J.; Gao, L.; Han, E.-H. Fretting wear between Alloy 690 and 405 stainless steel in high temperature pressurized water with different normal force and displacement. J. Nucl. Mater. 2020, 529, 151930. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, K.; Zhang, H.; Hu, H.; Qiao, H. Thermal stability of microstructures induced by laser shock peening in TC17 titanium alloy. J. Alloys Compd. 2018, 767, 253–258. [Google Scholar] [CrossRef]
- Dang, X.; Liang, X.; Luo, S.; Li, Y.; Jiao, Y.; Tian, Z.; He, W. Surface strengthening and fatigue life improvement of single crystal Ni-based superalloys via laser shock peening without coating. Mater. Des. 2023, 232, 112097. [Google Scholar] [CrossRef]
- Zhao, W.; He, W.; Zhu, D.; Liang, X.; Pang, Z.; Dong, J.; Luo, S. Comparative investigation on microstructure and mechanical properties of GH4169 superalloy after laser shock peening with and without coating. J. Mater. Res. Technol. 2024, 29, 276–285. [Google Scholar] [CrossRef]
Element. | Cr | Co | Mo | W | Ta | Re | Nb | Al | Hf | Ni |
---|---|---|---|---|---|---|---|---|---|---|
Wt.% | 4.3 | 9.0 | 2.0 | 8.0 | 7.5 | 2.0 | 0.5 | 5.6 | 0.1 | Bal. |
Pulse Energy | Times | Frequency (Hz) | Pulse Length (ns) | Beam Diameter (mm) | Overlap Rate | |
---|---|---|---|---|---|---|
LSP | 5 J | 3 | 2 | 20 | 2.2 | 50% |
LSPwC | 80 mJ | 3 | 50 | 8–10 | 0.4 | 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qiao, L.; Dang, X.; Lang, M.; Luo, S.; Zhou, L.; Liang, X.; He, W. Surface Integrity Evolution and Fretting Wear Improvement of DD6 Single-Crystal Superalloy via Laser Shock Peening and Laser Shock Peening Without Coating. Metals 2025, 15, 889. https://doi.org/10.3390/met15080889
Li Y, Qiao L, Dang X, Lang M, Luo S, Zhou L, Liang X, He W. Surface Integrity Evolution and Fretting Wear Improvement of DD6 Single-Crystal Superalloy via Laser Shock Peening and Laser Shock Peening Without Coating. Metals. 2025; 15(8):889. https://doi.org/10.3390/met15080889
Chicago/Turabian StyleLi, Yuliang, Linjie Qiao, Xiaofeng Dang, Mo Lang, Sihai Luo, Liucheng Zhou, Xiaoqing Liang, and Weifeng He. 2025. "Surface Integrity Evolution and Fretting Wear Improvement of DD6 Single-Crystal Superalloy via Laser Shock Peening and Laser Shock Peening Without Coating" Metals 15, no. 8: 889. https://doi.org/10.3390/met15080889
APA StyleLi, Y., Qiao, L., Dang, X., Lang, M., Luo, S., Zhou, L., Liang, X., & He, W. (2025). Surface Integrity Evolution and Fretting Wear Improvement of DD6 Single-Crystal Superalloy via Laser Shock Peening and Laser Shock Peening Without Coating. Metals, 15(8), 889. https://doi.org/10.3390/met15080889