Investigation of High-Temperature Durability and Microstructure Evolution of G115 Steel After Long-Term Aging at 650 °C
Abstract
:1. Introduction
- Service temperature alignment
- 2.
- Phase stability optimization
2. Materials and Experiments
2.1. Microstructure Study
2.2. Tensile Test
3. Results
3.1. Microstructures
3.2. EBSD Characterizations
3.3. TEM Observation
3.4. Tensile Test Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.D.; Chen, X.D.; Jiang, H.F.; Chen, C.G.; Zhang, X.A. Design technology of large-scale spiral wound heat exchanger in re-finery industry. Proc. Eng. 2015, 130, 286–297. [Google Scholar] [CrossRef]
- Abe, F.; Tabuchi, M.; Tsukamoto, S. Alloy Design of Martensitic 9Cr-Boron Steel for A-USC Boiler at 650 °C-Beyond Grades 91, 92 and 122. In Energy Materials 2014: Conference Proceedings; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yang, X.J.; Liu, M.H.; Liu, Z.Y.; Du, C.W.; Li, X.G. Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units. Eng. Fail. Anal. 2020, 116, 104729. [Google Scholar] [CrossRef]
- Jing, H.; Su, D.; Xu, L.; Zhao, L.; Han, Y.; Sun, R. Finite element simulation of creep fatigue crack growth behavior for P91 steel at 625 °C considering creep-fatigue interaction. Int. J. Fatigue 2017, 98, 41–52. [Google Scholar] [CrossRef]
- Gong, X.; Short, M.P.; Auger, T.; Charampopoulou, E.; Lambrinou, K. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooledreactors. Prog. Mater. Sci. 2022, 126, 100920. [Google Scholar] [CrossRef]
- Zhang, J.C.; Di, H.S.; Deng, Y.G.; Misra, R.D.K. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel. Mater. Sci. Eng. A 2015, 627, 230–240. [Google Scholar] [CrossRef]
- Semba, H.; Abe, F. Alloy design and creep strength of advanced 9%Cr USC boiler steels containing high concentration of boron. J. Energ. Mater. 2013, 4, 238–244. [Google Scholar] [CrossRef]
- Abe, F. Alloy design of creep and oxidation resistant 9% Cr steel for high efficiency USC power plant. Mater. Sci. Forum 2012, 706–709, 3–8. [Google Scholar] [CrossRef]
- Wen, J.F.; Tu, S.T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction. Eng. Fract. Mech. 2014, 123, 197–210. [Google Scholar] [CrossRef]
- Ostergren, W.J. A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J. Test. Eval. 1976, 4, 327–339. [Google Scholar] [CrossRef]
- Zhang, M.Y.; He, G.Z.; Lapington, M.; Zhou, W.Y.; Shory, M.P.; Bagot, P.A.J.; Moody, M.P. Nano-scale corrosion mechanism of T91 steel in staticlead-bismuth eutectic: A combined APT, EBSD, and STEM investigation. Acta Mater. 2024, 271, 119883. [Google Scholar] [CrossRef]
- Abe, F. Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Sci. Technol. Adv. Mat. 2008, 9, 013002. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.R.; Zhu, W.J.; Li, Y.J.; Ma, X.F.; Wang, D. New insights into selective leaching and ferritization in 15-15Ti austenitic steel in lead-bismuth eutectic through parent phase reconstruction. Scr. Mater. 2025, 254, 116316. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, L.; Gao, Z.; Han, Y. A novel creep-fatigue interaction damage model with the stress effect to simulate the creep-fatigue crack growth behavior. Int. J. Mech. Sci. 2017, 130, 143–153. [Google Scholar] [CrossRef]
- Ma, X.L.; Huang, C.X.; Moering, J.; Ruppert, M.; Hoppel, H.W.; Goken, M.; Narayan, J.; Zhu, Y.T. Mechanical properties of cop-per/bronze laminates: Role of interfaces. Acta Mater. 2016, 116, 43–52. [Google Scholar] [CrossRef]
- Yan, P.; Liu, Z.; Bao, H.; Weng, Y.; Liu, W. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat re-sistant steel. Mater. Des. 2014, 54, 874–879. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, L.; Nikbin, K. Predicting failure modes in creep and creep-fatigue crack growth using a random grain/grain bound-ary idealised microstructure meshing system. Mater. Sci. Eng. A 2017, 704, 274–286. [Google Scholar] [CrossRef]
- Lemaitre, J.A.; Plumtree, A. Application of damage concepts to predict creep-fatigue failures. J. Eng. Mater. Technol. 1979, 101, 284–292. [Google Scholar] [CrossRef]
- Zhao, L.; Jing, H.; Han, Y.; Xiu, J.; Xu, L. Prediction of creep crack growth behavior in ASME P92 steel welded joint. Comp. Mater. Sci. 2012, 61, 185–193. [Google Scholar] [CrossRef]
- Hyde, T.H.; Saber, M.; Sun, W. Testing and modelling of creep crack growth in compact tension specimens from a P91 weld at 650 °C. Eng. Fract. Mech. 2010, 77, 2946–2957. [Google Scholar] [CrossRef]
- Maia, E.L.; Gavrilov, S.; Tsisar, V.; Baert, K.; De Graeve, I. Early stages of liquid-metal corrosion on pre-oxidized surfaces of austenitic stainless steel 316L exposedto static Pb-Bi eutectic at 400 °C. Corros. Sci. 2024, 227, 111680. [Google Scholar] [CrossRef]
- Hajyakbary, F.; Sietsma, J.; Böttger, A.J. An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures. Mater. Sci. Eng. A 2015, 639, 208–218. [Google Scholar] [CrossRef]
- Gao, Q.; Dong, X.; Li, C.; Lin, Z.; Yang, X.; Dai, M. Microstructure and oxidationproperties of 9Cr-1.7W-0.4Mo-Co ferritic steel after isothermal aging. J. Alloys Compd. 2015, 651, 537–543. [Google Scholar] [CrossRef]
- Cantwell, P.R.; Tang, M.; Dillon, S.J.; Luo, J.; Rohrer, G.S.; Harmer, M.P. Grainboundary complexions. Acta Mater. 2014, 62, 1–48. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, L.; Zhao, L.; Jing, H.; Han, Y.; Tang, Z. Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short term creep. Mater. Sci. Eng. A 2017, 707, 466–477. [Google Scholar] [CrossRef]
- Zhu, S.P.; Huang, H.Z.; He, L.P.; Liu, Y.; Wang, Z. A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys. Eng. Fract. Mech. 2012, 90, 89–100. [Google Scholar] [CrossRef]
- Qu, Z.; Zhang, Z.J.; Liu, R.; Xu, L.; Zhang, Y.N.; Li, X.T.; Zhao, Z.K.; Duan, Q.Q.; Wang, S.G.; Li, S.J.; et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing. Nature 2024, 626, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Narasimhachary, S.B. Round robin on creep fatigue crack growth testing for verification of ASTM standard 2760-10. Mater. High Temp. 2014, 31, 357–363. [Google Scholar] [CrossRef]
- Schroer, C.; Tsisar, V.; Durand, A.; Wedemeyer, O.; Skrypnik, A.; Konys, J. Corrosionin iron and steel T91 caused by flowing lead–bismuth eutectic at 400 °C and 10–7mass% dissolved oxygen. ASME J. Nucl. Rad. Sci. 2019, 5, 011006. [Google Scholar] [CrossRef]
- Fedoseeva, A.; Dudova, N.; Kaibyshev, R. Creep behavior and microstructure of a 9Cr-3Co-3W martensitic steel. J. Mater. Sci. 2017, 52, 2974–2988. [Google Scholar] [CrossRef]
- Xu, Y.T.; Wang, M.J.; Wang, Y.; Gu, T.; Chen, L.; Zhou, X.; Ma, Q.; Liu, Y.M.; Huang, J. Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging. J. Alloys Compd. 2015, 621, 93–98. [Google Scholar] [CrossRef]
- Yu, J.; Ma, S.; Liang, K.; Yan, K.; Yang, X.; Zhang, S. Evolutions on Microstructure and Impact Toughness of G115 Steel after Long-Term Aging at 700 °C. Metals 2024, 14, 921. [Google Scholar] [CrossRef]
- Hajra, R.N.; Rai, A.K.; Tripathy, H.P.; Raju, S.; Saroja, S. Influence of tungsten on transformation characteristics in P92 ferritic-martensitic steel. J. Alloys Compd. 2016, 689, 829–836. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Han, S.; Li, X.; Li, Y.; Wang, C. Investigation of High-Temperature Durability and Microstructure Evolution of G115 Steel After Long-Term Aging at 650 °C. Metals 2025, 15, 535. https://doi.org/10.3390/met15050535
Ma S, Han S, Li X, Li Y, Wang C. Investigation of High-Temperature Durability and Microstructure Evolution of G115 Steel After Long-Term Aging at 650 °C. Metals. 2025; 15(5):535. https://doi.org/10.3390/met15050535
Chicago/Turabian StyleMa, Shaohai, Shun Han, Xinyang Li, Yong Li, and Chunxu Wang. 2025. "Investigation of High-Temperature Durability and Microstructure Evolution of G115 Steel After Long-Term Aging at 650 °C" Metals 15, no. 5: 535. https://doi.org/10.3390/met15050535
APA StyleMa, S., Han, S., Li, X., Li, Y., & Wang, C. (2025). Investigation of High-Temperature Durability and Microstructure Evolution of G115 Steel After Long-Term Aging at 650 °C. Metals, 15(5), 535. https://doi.org/10.3390/met15050535