Mechanical and Microstructural Properties of High-Speed Friction Stir Welding of AA 7020 Aluminum Alloy Using Multi-Pin Tool
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- All welds were produced without any defects, indicating the process stability and effectiveness of the multi-pin tool. The tensile strength of all welded joints exceeded 70% of the base material strength, with a maximum of 266 MPa (76%) achieved at a feed rate of 6000 mm/min.
- The stir zone exhibited significant grain refinement due to dynamic recrystallization, with the smallest average grain size (2.47 µm) observed at 4000 mm/min, suggesting optimal thermal and mechanical conditions at this speed.
- Hardness measurements revealed localized softening in the NZ and HAZ, as expected for friction stir-welded 7xxx series alloys. A peak in minimum hardness was recorded at 4000 mm/min (86 HV), with only a modest decline observed at higher feed rates.
- Even at the maximum feed rate of 6000 mm/min, the minimum hardness remained within an acceptable range, confirming that defect-free and mechanically reliable joints can be achieved under high-speed conditions.
- The multi-pin tool enhanced material flow and heat distribution, contributing to consistent weld quality across all feed rates.
- Overall, 4000 mm/min represents the most favorable condition in terms of mechanical strength and microstructural refinement, while the results at higher feed rates confirm the potential for increased manufacturing efficiency without compromising weld integrity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FSW | Friction stir welding |
HSFSW | High-speed friction stir welding |
BM | Base material |
HAZ | Heat-affected zone |
TMAZ | Thermomechanical affected zone |
NZ | Nugget zone |
µ-CT | Micro-computed tomography |
EBSD | Electron backscatter diffraction |
TWI | The Welding Institute |
TWB | Tailored welded blanks |
UTS | Ultimate tensile strength |
References
- Tisza, M.; Czinege, I. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Lightweight Mater. Manuf. 2018, 1, 229–238. [Google Scholar] [CrossRef]
- Verma, R.P.; Pandey, K.N.; András, K.; Khargotra, R.; Singh, T. Difficulties and redressal in joining of aluminium alloys by GMA and GTA welding: A review. J. Mater. Res. Technol. 2023, 23, 2576–2586. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; El-Sayed Seleman, M.M.; Fydrych, D.; Çam, G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review. Materials 2023, 16, 2971. [Google Scholar] [CrossRef]
- Bulej, V.; Kuric, I.; Sága, M.; Vaško, M.; Ságová, Z.; Bartoš, M.; Legutko, S. Analysis of Symmetrical/Asymmetrical Loading Influence of the Full-Suspension Downhill Bicycle’s Frame on the Crack Failure Formation at a Critical Point during Different Driving Scenarios and Design Improvement. Symmetry 2022, 14, 255. [Google Scholar] [CrossRef]
- Shah, P.H.; Badheka, V.J. Friction stir welding of aluminium alloys: An overview of experimental findings—Process, variables, development and applications. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 1191–1226. [Google Scholar] [CrossRef]
- Khan, N.; Rathee, S.; Srivastava, M. Friction stir welding: An overview on effect of tool variables. Mater. Today Proc. 2021, 47, 7196–7202. [Google Scholar] [CrossRef]
- Thomas, W.M. Friction Stir Butt Welding. International Patent Application PCT/GB92/02203, 6 December 1991. [Google Scholar]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Jain, R. Fundamentals of Friction Stir Welding, Its Application, and Advancements. In Welding Technology; Davim, J.P., Ed.; Springer: Cham, Switzerland, 2021; pp. 41–90. [Google Scholar]
- Stephen Leon, J.; Bharathiraja, G.; Jayakumar, V. A review on Friction Stir Welding in Aluminium Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2020, 954, 012007. [Google Scholar] [CrossRef]
- Akbari, M.; Aliha, M.R.M.; Keshavarz, S.M.E.; Bonyadi, A. Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 1033–1043. [Google Scholar] [CrossRef]
- Hoyos, E.; Serna, M.C. Basic Tool Design Guidelines for Friction Stir Welding of Aluminum Alloys. Metals 2021, 11, 2042. [Google Scholar] [CrossRef]
- Maji, P.; Karmakar, R.; Kanti Nath, R.; Paul, P. An overview on friction stir welding/processing tools. Mater. Today Proc. 2022, 58, 57–64. [Google Scholar] [CrossRef]
- Hatzky, M.; Böhm, S. Extension of Gap Bridgeability and Prevention of Oxide Lines in the Welding Seam through Application of Tools with Multi-Welding Pins. Metals 2021, 11, 1219. [Google Scholar] [CrossRef]
- Tang, J.; Shen, Y.; Li, J. Influences of friction stir processing parameters on microstructure and mechanical properties of SiC/Al composites fabricated by multi-pin tool. J. Manuf. Process. 2019, 38, 279–289. [Google Scholar] [CrossRef]
- Fadaeifard, F.; Matori, K.; Abd Aziz, S.; Zolkarnain, L.; Abdul Rahim, M. Effect of the Welding Speed on the Macrostructure, Microstructure and Mechanical Properties of AA6061-T6 Friction Stir Butt Welds. Metals 2017, 7, 48. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Ni, D.R.; Wang, D.; Xiao, B.L.; Ma, Z.Y. Influence of welding parameter on mechanical properties and fracture behavior of friction stir welded Al–Mg–Sc joints. Mater. Sci. Eng. A 2014, 612, 236–245. [Google Scholar] [CrossRef]
- Chandra, C.K.; Sommer, N.; Heider, B.; Hatzky, M.; Reitz, R.; Böhm, S.; Oechsner, M. Influence of Friction Stir Weld Parameters on the Corrosion Susceptibility of EN AW-7075 Weld Seam and Heat-Affected Zone. Adv. Eng. Mater. 2023, 25, 2300130. [Google Scholar] [CrossRef]
- Selvamani, S.T. Various welding processes for joining aluminium alloy with steel: Effect of process parameters and observations–a review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 5428–5454. [Google Scholar] [CrossRef]
- Mystica, A.; Senthil Kumar, V.S.; Rathinasuriyan, C. A review on the influence of cooling applications in friction stir welding process. Surf. Rev. Lett. 2024, 31, 2430002. [Google Scholar] [CrossRef]
- Zhang, J.; Upadhyay, P.; Hovanski, Y.; Field, D.P. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History. Metall. Mater. Trans. A 2018, 49, 210–222. [Google Scholar] [CrossRef]
- Kar, A.; Singh, K.; Kumar, L. Effect of Tool Rotational Speed and Mechanisms Associated with Microstructure Evolution and Intermetallics Formation in Friction Stir Welding of Aluminum Alloy to Titanium Alloy. J. Mater. Eng. Perform. 2024, 33, 6748–6759. [Google Scholar] [CrossRef]
- Costanza, G.; Tata, M.E.; Cioccari, D. Explosion Welding: Process Evolution and Parameters Optimization. MSF 2018, 941, 1558–1564. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, V.; Kumar, R.; Sidhu, R.S. Exploring the application domain of friction stir welding in aluminum and other alloys. Mater. Today Proc. 2022, 50, 1032–1042. [Google Scholar] [CrossRef]
- Kayode, O.; Akinlabi, E.T. An overview on joining of aluminium and magnesium alloys using friction stir welding (FSW) for automotive lightweight applications. Mater. Res. Express 2019, 6, 112005. [Google Scholar] [CrossRef]
- Delir Nazarlou, R.; Nemati Akhgar, B.; Omidbakhsh, F. Optimizations of friction stir welding parameters with Taguchi method for the maximum electrical conductivity in Al-1080 welded sections. Sci. Iran. 2021, 28, 2250–2258. [Google Scholar] [CrossRef]
- Mahakur, V.K.; Gouda, K.; Patowari, P.K.; Bhowmik, S. A Review on Advancement in Friction Stir Welding Considering the Tool and Material Parameters. Arab. J. Sci. Eng. 2021, 46, 7681–7697. [Google Scholar] [CrossRef]
- Soori, M.; Asmael, M.; Solyalı, D. Recent Development in Friction Stir Welding Process: A Review. SAE Int. J. Mater. Manuf. 2021, 14, 63–80. [Google Scholar] [CrossRef]
- Rodrigues, D.M.; Leitão, C.; Louro, R.; Gouveia, H.; Loureiro, A. High speed friction stir welding of aluminium alloys. Sci. Technol. Weld. Join. 2010, 15, 676–681. [Google Scholar] [CrossRef]
- Naumov, A.; Morozova, I.; Rylkov, E.; Obrosov, A.; Isupov, F.; Michailov, V.; Rudskoy, A. Metallurgical and Mechanical Characterization of High-Speed Friction Stir Welded AA 6082-T6 Aluminum Alloy. Materials 2019, 12, 4211. [Google Scholar] [CrossRef]
- Xu, A. Properties of High Speed Friction Stir Welded 6063-T6 Aluminum Alloy. J. Phys. Conf. Ser. 2020, 1676, 12107. [Google Scholar] [CrossRef]
- Patel, V.; De Backer, J.; Hindsefelt, H.; Igestrand, M.; Azimi, S.; Andersson, J.; Säll, J. High speed friction stir welding of AA6063-T6 alloy in lightweight battery trays for EV industry: Influence of tool rotation speeds. Mater. Lett. 2022, 318, 132135. [Google Scholar] [CrossRef]
- Bernard, D.; Hattingh, D.G.; Goosen, W.E.; James, M.N. High Speed Friction Stir Welding of 5182-H111 Alloy: Temperature and Microstructural Insights into Deformation Mechanisms. Met. Mater. Int. 2021, 27, 2821–2836. [Google Scholar] [CrossRef]
- Hovanski, Y.; Upadhyay, P.; Carsley, J.; Luzanski, T.; Carlson, B.; Eisenmenger, M.; Soulami, A.; Marshall, D.; Landino, B.; Hartfield-Wunsch, S. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks. JOM 2015, 67, 1045–1053. [Google Scholar] [CrossRef]
- Arora, K.S.; Pandey, S.; Schaper, M.; Kumar, R. Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int. J. Adv. Manuf. Technol. 2010, 50, 941–952. [Google Scholar] [CrossRef]
- Li, D.; Yang, X.; Cui, L.; He, F.; Zhang, X. Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651. J. Mater. Process. Technol. 2015, 222, 391–398. [Google Scholar] [CrossRef]
- Dudzik, K.; Jurczak, W. Influence of Friction Stir Welding (FSW) on Mechanical and Corrosion Properties of AW-7020M and Aw-7020 Alloys. Pol. Marit. Res. 2016, 23, 86–90. [Google Scholar] [CrossRef]
- Panda, B.; Garg, A.; Jian, Z.; Heidarzadeh, A.; Gao, L. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed. Front. Mech. Eng. 2016, 11, 289–298. [Google Scholar] [CrossRef]
- Rahimzadeh Ilkhichi, A.; Soufi, R.; Hussain, G.; Vatankhah Barenji, R.; Heidarzadeh, A. Establishing Mathematical Models to Predict Grain Size and Hardness of the Friction Stir-Welded AA 7020 Aluminum Alloy Joints. Metall. Mater. Trans. B 2015, 46, 357–365. [Google Scholar] [CrossRef]
- Kadaganchi, R.; Gankidi, M.R.; Gokhale, H. Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology. Def. Technol. 2015, 11, 209–219. [Google Scholar] [CrossRef]
- Barenji, R.V. Effect of tool traverse speed on microstructure and mechanical performance of friction stir welded 7020 aluminum alloy. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2016, 230, 663–673. [Google Scholar] [CrossRef]
- Rodrigues, D.; Costa, M.; Leitao, C. Analysis of AA 6082-T6 welds strength mismatch: Stress versus hardness relationships. Int. J. Adv. Manuf. Technol. 2015, 79, 719–727. [Google Scholar]
- Sabari, S.; Malarvizhi, S.; Balasubramanian, V.; Reddy, G. Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy. Def. Technol. 2016, 12, 324–333. [Google Scholar] [CrossRef]
- Liu, F.J.; Fu, L.; Chen, H.Y. Effect of high rotational speed on temperature distribution, microstructure evolution, and mechanical properties of friction stir welded 6061-T6 thin plate joints. Int. J. Adv. Manuf. Technol. 2018, 96, 1823–1833. [Google Scholar] [CrossRef]
- Dong, P.; Li, H.; Sun, D.; Gong, W.; Liu, J. Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy. Mater. Des. 2013, 45, 524–531. [Google Scholar] [CrossRef]
- Hou, W.; Shen, Y.; Huang, G.; Yan, Y.; Guo, C.; Li, J. Dissimilar friction stir welding of aluminum alloys adopting a novel dual-pin tool: Microstructure evolution and mechanical properties. J. Manuf. Process. 2018, 36, 613–620. [Google Scholar] [CrossRef]
- Alipour Behzadi, M.; Ranjbar, K.; Dehmolaei, R.; Bagherpour, E. Friction-stir-welded overaged 7020-T6 alloy joint: An investigation on the effect of rotational speed on the microstructure and mechanical properties. Int. J. Miner. Metall. Mater. 2019, 26, 622–633. [Google Scholar] [CrossRef]
- DIN EN 485-2:2016; Aluminium and Aluminium Alloys—Sheet, Strip and Plate—Part 2: Mechanical Properties. Beuth Verlag: Berlin, Germany, 2016.
- DIN EN ISO 17639:2013; Destructive Tests on Welds in Metallic Materials—Macroscopic and Microscopic Examination of Welds. Beuth Verlag: Berlin, Germany, 2013.
- DIN EN ISO 4136:2022; Destructive Tests on Welds in Metallic Materials—Transverse Tensile Test. Beuth Verlag: Berlin, Germany, 2022.
- Beausir, B.; Fundenberger, J.J. Analysis Tools for Electron and X-Ray Diffraction. 2017. Available online: http://www.atex-software.eu/ (accessed on 5 September 2024).
- Abhilash; Nunthavarawong, P.; Ratanathavorn, W.; Kowitwarangkul, P. Advances in friction stir welding of dissimilar aluminum and steel: A review on challenges, assisted techniques, and future prospects. Mater. Manuf. Process. 2024, 39, 1639–1672. [Google Scholar] [CrossRef]
- Hammad, A.S.; Lu, H.; Seleman, M.M.E.-S.; Ahmed, M.M.Z.; Alamry, A.; Zhang, J.; Huang, H.; Alzahrani, B.; Yang, G.; Abd El-Aty, A.; et al. Impact of the tool shoulder diameter to pin diameter ratio and welding speed on the performance of friction sir-welded AA7075-T651 Al alloy butt joints. Mater. Res. Express 2024, 11, 56506. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Shi, L.; Wu, C.; Li, S.; Gao, S. Optimizing the shoulder diameter for double side friction stir welding of medium-thick TC4/AA2024 dissimilar alloys by Taguchi optimization technique. Weld. World 2023, 67, 1887–1899. [Google Scholar] [CrossRef]
- Rendas, P.; Figueiredo, L.; Melo, P.; Galhano, C.; Vidal, C.; Soares, B.A.R. Investigation of Friction Stir Welding of Additively Manufactured Biocompatible Thermoplastics Using Stationary Shoulder and Assisted Heating. Polymers 2024, 16, 1897. [Google Scholar] [CrossRef]
- Tariq, M.; Khan, I.; Hussain, G.; Farooq, U. Microstructure and micro-hardness analysis of friction stir welded bi-layered laminated aluminum sheets. Int. J. Lightweight Mater. Manuf. 2019, 2, 123–130. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Wang, Q.; Xia, P.; Li, D. 7075 aluminum alloy Friction Stir Welding (FSW): Quality analysis and mechanical properties with WC-Co tool. Mater. Today Commun. 2024, 38, 108203. [Google Scholar] [CrossRef]
- Prabhuraj, P.; Rajakumar, S.; Balasubramanian, V. Electro chemical response of stir zone in friction stir welded AA7075-T651 joint in sodium chloride solution. Mater. Today Proc. 2020, 22, 546–550. [Google Scholar] [CrossRef]
- Delir Nazarlou, R.; Omidbakhsh, F. Evaluation of bulk defects area in friction stir welded 1080 aluminum alloy utilizing electrical resistivity measurements. J. Adhes. Sci. Technol. 2022, 36, 1921–1931. [Google Scholar] [CrossRef]
- Mohanraj, N.; Kumar, N.M.; Prathap, P.; Ganeshan, P.; Raja, K.; Mohanavel, V.; Karthick, A.; Muhibbullah, M. Mechanical Properties and Electrical Resistivity of the Friction Stir Spot-Welded Dissimilar Al–Cu Joints. Int. J. Polym. Sci. 2022, 2022, 4130440. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Al |
---|---|---|---|---|---|---|---|---|
wt. (%) | 0.35 | 0.4 | 0.2 | 0.05–0.5 | 1–1.4 | 0.10–0.35 | 4–5 | Bal. |
Property | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Hardness (HV) | Modulus of Elasticity (GPa) | Density (g/cm3) | ||
Value | 320 | 240 | 6 | 120 | 70 | 2.78 |
Sample No. | Base Material | 2500 mm/min | 3000 mm/min | 3500 mm/min | 4000 mm/min | 4500 mm/min | 5000 mm/min | 5500 mm/min | 6000 mm/min |
---|---|---|---|---|---|---|---|---|---|
Electrical Resistivity (µΩ.mm2/mm) | 42.66 | 49.33 | 48.56 | 49.2 | 48.24 | 48.42 | 48.18 | 48.3 | 47.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delir Nazarlou, R.; Salim, S.; Wiegand, M.; Wolf, C.; Böhm, S. Mechanical and Microstructural Properties of High-Speed Friction Stir Welding of AA 7020 Aluminum Alloy Using Multi-Pin Tool. Metals 2025, 15, 511. https://doi.org/10.3390/met15050511
Delir Nazarlou R, Salim S, Wiegand M, Wolf C, Böhm S. Mechanical and Microstructural Properties of High-Speed Friction Stir Welding of AA 7020 Aluminum Alloy Using Multi-Pin Tool. Metals. 2025; 15(5):511. https://doi.org/10.3390/met15050511
Chicago/Turabian StyleDelir Nazarlou, Ramin, Samita Salim, Michael Wiegand, Christian Wolf, and Stefan Böhm. 2025. "Mechanical and Microstructural Properties of High-Speed Friction Stir Welding of AA 7020 Aluminum Alloy Using Multi-Pin Tool" Metals 15, no. 5: 511. https://doi.org/10.3390/met15050511
APA StyleDelir Nazarlou, R., Salim, S., Wiegand, M., Wolf, C., & Böhm, S. (2025). Mechanical and Microstructural Properties of High-Speed Friction Stir Welding of AA 7020 Aluminum Alloy Using Multi-Pin Tool. Metals, 15(5), 511. https://doi.org/10.3390/met15050511