Effect of Pre-Deformation on the Microstructure and Precipitation Behavior of Spray-Formed 7xxx Series Aluminum Alloys
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Microstructure Characterization
3. Result
3.1. Microstructure After Rolling Pre-Deformation
3.2. The Microstructure of the Alloy After High-Temperature Heat Treatment
3.3. Microstructure of the Alloy After Aging Treatment
4. Discussion
5. Conclusions
- A large number of dislocations are formed by pre-deformation, which forms small-angle boundaries in grains. The proportion of small-angle grain boundaries is increased from 40% to 66% by pre-deformation.
- Upon heating at 580 °C, the solidification-formed second phases are dissolved. The alloy without pre-deformation shows eutectic structures, while the eutectic structures are suppressed by pre-deformation. In addition, pre-deformation promotes rapid grain growth during heating. In addition, some of the dislocations introduced by pre-deformation are retained after being held at 580 °C.
- During the aging process, the alloy with pre-deformation that has a lot of dislocations will facilitate the nucleation of η′ precipitates. As a result, dislocations are extensively consumed, and more η′ precipitates are formed in the alloy.
- The metallographic analysis shows clear effects of pre-deformation on the micro-structure. The group with pre-deformation exhibits more small-angle grain boundaries and a higher density of stresses, as shown by the EBSD KAM maps. This indicates that pre-deformation significantly alters the grain boundary character and precipitate distribution, influencing the alloy’s mechanical properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Freixes, M.L.; Zhou, X.Y.; Zhao, H.; Godin, H.L.; Peguet, L.; Warner, T.; Gault, B. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale. Nat. Commun. 2022, 13, 4290. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.Z.; Yang, G.J.; Xu, X.Y.; Shan, D.B.; Guo, B.; He, B.B.; Fan, C.; Xu, W.C. On the origin of non-basal texture in extruded Mg-RE alloys and its implication for texture engineering. J. Magnes. Alloys 2024, 2024, 2213–9567. [Google Scholar] [CrossRef]
- Liu, D.; Wu, D.; Wang, Y.; Chen, Z.; Ge, C.; Zhao, Q.; Niu, F.; Ma, G. Enhanced high-temperature mechanical properties of laser-arc hybrid additive manufacturing of Al-Zn-Mg-Cu alloy via microstructure control. J. Mater. Sci. Technol. 2024, 169, 220–234. [Google Scholar] [CrossRef]
- Zhao, H.; Chakraborty, P.; Ponge, D.; Hickel, T.; Sun, B.H.; Wu, C.H.; Gault, B.; Raabe, D. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022, 602, 437–441. [Google Scholar] [CrossRef]
- Mouritz, A.P. Introduction to Aerospace Materials; Woodhead Publishing: Cambridge, UK, 2012; pp. 21–23. [Google Scholar]
- Li, Y.; Wang, Y.; Lu, B.; Yu, W.; Wang, H.Y.; Xu, G.M.; Wang, Z.D. Effect of Cu content and Zn/Mg ratio on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys. J. Mater. Sci. Technol. 2022, 19, 3451–3460. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, K.K.; Bian, J.J.; Zhang, J.Y. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al–Zn–Mg alloy. Acta Mater. 2021, 207, 116682. [Google Scholar] [CrossRef]
- Won, S.-J.; So, H.; Kang, L. Development of a high-strength Al-Zn-Mg-Cu-based alloy via multi-strengthening mechanisms. Scr. Mater. 2021, 205, 114216. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.; Marceau, R.; Wang, L.; Zhang, Q.; Gao, X.; Hutchinson, C. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972–975. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, J.W.; Sun, L.; Li, X.W.; Li, Z.H.; Wang, L.G. Theoretical investigation of the strengthening mechanism and precipitation evolution in high strength Al-Zn-Mg alloys. Phys. Chem. Chem. Phys. 2018, 20, 13616–13622. [Google Scholar] [CrossRef]
- Zhang, X.P.; Deng, X.T.; Zhou, H.F.; Wang, J.W. Atomic-scale study on the precipitation behavior of an Al–Zn–Mg–Cu alloy during isochronal aging. J. Mater. Sci. Technol. 2022, 108, 281–292. [Google Scholar] [CrossRef]
- Mo, Y.T.; Wang, C.; Zhang, S.Y.; Liu, X.; Zha, M.; Luan, J.H.; Wang, H.Y. Achieving high strength-ductility synergy through high-density coherent precipitation in twin-roll cast Al–Zn–Mg–Cu strips. Mater. Sci. Eng. A 2022, 850, 143592. [Google Scholar] [CrossRef]
- Ma, K.; Hu, T.; Yang, H.; Topping, T.; Yousefiani, A.; Lavernia, E.J.; Schoenung, J.M. Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys. Acta Mater. 2016, 103, 153–164. [Google Scholar] [CrossRef]
- Wang, Z.P.; Wang, M.L.; Li, Y.G.; Xiao, H.Y.; Chen, H.; Geng, J.W.; Li, X.F.; Chen, D.; Wang, H.W. Effect of pretreatment on microstructural stability and mechanical property in a spray formed Al-Zn-Mg-Cu alloy. Mater. Design. 2021, 203, 109618. [Google Scholar] [CrossRef]
- Legros, M.; Dehm, G.; Arzt, E.; Balk, T.J. Observation of Giant Diffusivity Along Dislocation Cores. Science 2008, 319, 1646–1649. [Google Scholar] [CrossRef]
- Mondal, C.D.; Mukhopadhyay, A.K.; Raghu, T. Tensile properties of peak aged 7055 aluminum alloy extrusions. Mater. Sci. Eng. A 2007, 454, 673–678. [Google Scholar] [CrossRef]
- Han, Z.J. The Second Phase and Grain Evolution Behavior During the Hot Working Process of Spray Formed 7055 Aluminum Alloy, Second Phase and Grain Evolution Behavior of 7055 Aluminum Alloy During Hot Working by Spray Forming. Master’s Thesis, Jiangsu University of Science and Technology, Zhenjiang, China, 2022. (In Chinese). [Google Scholar]
- Marioara, C.D.; Lefebvre, W.; Andersen, S.J.; Friis, J. Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first-principles calculations: Relation to η-MgZn2. J Mater. Sci. 2013, 48, 3638–3651. [Google Scholar] [CrossRef]
- Zou, Y.; Cao, L.F.; Wu, X.D.; Tang, S.B.; Guo, M.X. Synergetic effect of natural ageing and pre-stretching on the ageing behavior in T′/η′ phase-strengthened Al-Zn-Mg-Cu alloys. J. Mater. Sci. Technol. 2023, 146, 240–251. [Google Scholar] [CrossRef]
- Wang, R.; Luo, H.; Wu, S.; Zhao, T.; Wang, X.; Ritchie, R.O. Anisotropic growth of nano-precipitates governed by preferred orientation and residual stress in an Al-Zn-Mg-Cu alloy. J. Mater. Sci. Technol. 2024, 188, 234–251. [Google Scholar] [CrossRef]
- Berg, L.K.; Gjønnes, J.; Hansen, V.; Li, X.Z.; Knutson-Wedel, M.; Waterloo, G.; Schryvers, D.; Wallenberg, L.R. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001, 49, 3443–3451. [Google Scholar] [CrossRef]
- Qin, C.; Gou, G.Q.; Che, X.L.; Chen, H.; Chen, J. Effect of Alloying Elements on Mechanical Property and Fracture Toughness of A7N01S-T5 Aluminum Alloy. Chin. J. Mater. Res. 2015, 29, 535–541. [Google Scholar] [CrossRef]
- Han, B.S.; Wei, L.J.; Xu, Y.J.; Ma, X.G.; Liu, Y.F.; Hou, H.L. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment. Acta Metall. Sin. 2020, 56, 1007–1014. [Google Scholar] [CrossRef]
- Feng, H.; Fu, D.B.; Cheng, J.L.; Tang, Y.L.; Chen, J.F.; Wang, C.; Zou, L.C. Effect of compressed pre-deformation on precipitation behavior of 7050 aluminum alloy during non-isothermal aging. J. Mater. Eng. 2020, 48, 107–114. [Google Scholar] [CrossRef]
- Jiang, H.T.; Xing, H.; Xu, Z.H.; Feng, J.; Zhang, J.; Sun, B.D. Achieving superior strength-ductility balance in novel heterogeneous lamella structures of Al-Zn-Mg-Cu alloys. J. Mater. Sci. Technol. 2024, 184, 122–135. [Google Scholar] [CrossRef]
- Yu, C.; Chen, L.P.; Jiang, H.X.; Zhou, Q.; Yang, C.G. Effects of cryogenic-aging treatment on microstructure and mechanical properties of 7075 aluminum alloy. J. Mater. Res. 2023, 37, 120–128. [Google Scholar] [CrossRef]
- Dai, P.; Luo, X.; Yang, Y.Q.; Kou, Z.D.; Huang, B.; Wang, C.; Zang, J.X.; Ru, J.G. Nano-scale precipitate evolution and mechanical properties of 7085 aluminum alloy during thermal exposure. Mater. Sci. Eng. A 2018, 729, 411–422. [Google Scholar] [CrossRef]
- Werenskiold, J.C.; Deschamps, A.; Bréchet, Y. Characterization and modeling of precipitation kinetics in an Al–Zn–Mg alloy. Mater. Sci. Eng. A 2000, 293, 267–274. [Google Scholar] [CrossRef]
- Qiao, J.; Xia, H.; Xia, T.D.; Zhao, W.J.; Zhang, H.; Duan, R.F. Mechanical Properties of Extrusions of Spray Formed 7055 Al Alloy. Chin. J. Mater. Res. 2014, 28, 914–918. Available online: https://www.cjmr.org/CN/Y2014/V28/I12/914 (accessed on 21 February 2014).
- Jin, X.; Xu, W.; Shan, D.; Guo, B.; Jin, B.C. Mechanism of high-strength and ductility of Mg-RE alloy fabricated by low-temperature extrusion and aging treatment. Mater. Des. 2021, 199, 109384. [Google Scholar] [CrossRef]
- Jin, X.; Barro, O.; Riveiro, A.; Pou, J.; Pérez-Prado, M.T. Anomalous twin boundary formation in magnesium alloys by rapid solidification. Acta Mater. 2024, 272, 119935. [Google Scholar] [CrossRef]
- Sha, G.; Wang, Y.B.; Liao, X.Z.; Duan, Z.C.; Ringer, S.P.; Langdon, T.G. Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater. 2009, 57, 3123–3132. [Google Scholar] [CrossRef]
- Hebbar, S.; Kertsch, L.; Butz, A. Optimizing Heat Treatment Parameters for the W-Temper Forming of 7xxx Series Aluminum Alloys. Metals 2020, 10, 1361. [Google Scholar] [CrossRef]
- Chen, J.F.; Zou, L.C.; Chen, Y.L.; Li, Q. Effect of stress on precipitation behaviour of 7xxx alloy during age forming process. Mater. Sci. Technol. 2016, 32, 77–87. [Google Scholar] [CrossRef]
- Chung, T.F.; Yang, Y.L.; Shiojiri, M.; Hsiao, C.N.; Li, W.C.; Tsao, C.S.; Shi, Z.S.; Lin, J.G.; Yang, J.R. An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy. Acta Mater. 2019, 174, 351–368. [Google Scholar] [CrossRef]
- Sha, G.; Cerezo, A. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 2004, 52, 4503–4516. [Google Scholar] [CrossRef]
- Lin, L.; He, Y.; Li, Z. Quantifying the Effect of Pre-deformation on Microstructure-Property Relationships in an Overaged Al-Zn-Mg-Cu Alloy. JOM 2024, 76, 2043–2052. [Google Scholar] [CrossRef]
- Gonela, K.; Vijayavarman, C.; Palanivel, M.; Mariappan, L.; Ramasubramanian, L.; Kannan, A. Effect of robotic weaving motion on mechanical and microstructural characteristics of wire arc additively manufactured NiTi shape memory alloy. Int. J. Mater. Res. 2023, 114, 947–954. [Google Scholar] [CrossRef]
Elements | Weight Percent (wt.%) | Atomic Percent (at.%) |
---|---|---|
Al | 90.5% | 94.89% |
Zn | 6.14% | 2.66% |
Cu | 1.70% | 0.76% |
Mg | 1.36% | 1.58% |
Zr | 0.172% | 0.05% |
Si | 400 ppm | 0.04% |
Fe | 300 ppm | 0.02% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, H.; Zhang, L.; Xing, S.; Zhai, H.; Xia, S.; Zhai, L.; Wang, Z.; Liu, S. Effect of Pre-Deformation on the Microstructure and Precipitation Behavior of Spray-Formed 7xxx Series Aluminum Alloys. Metals 2025, 15, 365. https://doi.org/10.3390/met15040365
Hou H, Zhang L, Xing S, Zhai H, Xia S, Zhai L, Wang Z, Liu S. Effect of Pre-Deformation on the Microstructure and Precipitation Behavior of Spray-Formed 7xxx Series Aluminum Alloys. Metals. 2025; 15(4):365. https://doi.org/10.3390/met15040365
Chicago/Turabian StyleHou, Huiying, Lei Zhang, Shuohao Xing, Hongchao Zhai, Shule Xia, Long Zhai, Zhijie Wang, and Sha Liu. 2025. "Effect of Pre-Deformation on the Microstructure and Precipitation Behavior of Spray-Formed 7xxx Series Aluminum Alloys" Metals 15, no. 4: 365. https://doi.org/10.3390/met15040365
APA StyleHou, H., Zhang, L., Xing, S., Zhai, H., Xia, S., Zhai, L., Wang, Z., & Liu, S. (2025). Effect of Pre-Deformation on the Microstructure and Precipitation Behavior of Spray-Formed 7xxx Series Aluminum Alloys. Metals, 15(4), 365. https://doi.org/10.3390/met15040365