In Situ Heating TEM Study of the Interaction Between Diamond and Cu-Rich CoCrCuFeNi High-Entropy Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- No structural changes in the HEA or at the interface are observed in the temperature range of 20–450 °C. Above 500 °C, the coating consists of two phases (i.e., partial FCC-to-BCC phase transition is observed for CoCrCu2FeNi HEA).
- The interaction between CoCrCu2FeNi HEA and diamond starts at 700 °C and manifests itself as the surface diffusion of Fe, Co, Ni, and Cu on diamond.
- Intense diamond graphitization takes place at 800 °C. Large 30% Fe, 28% Co, 21% Ni, and 21% Cu clusters coherent to the diamond lattice (220)diamond || (220)FeCoNiCu are formed on the diamond surface under these conditions. They catalyze the transformation of diamond to graphite-like carbon with a crystallite size of 5–20 nm. Graphite interacts with chromium in the HEA, yielding Cr7C3 carbide.
- During annealing, copper is repelled away from the interface with diamond because of lower adsorption energy to be segregated in the FCC2 phase with spherical grains, 1–5 µm in size.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HEAs | High-entropy alloys |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
PBM | Planetary ball mill |
HP | Hot pressing |
AC | Amorphous carbon |
SAED | Selected area electron diffraction |
EDX | Energy dispersive X-ray |
BCC | Body-centered cubic lattice |
FCC | Face-centered cubic lattice |
XRD | X-ray diffraction analysis |
References
- Yang, Y.-F.; Hu, F.; Xia, T.; Li, R.-H.; Bai, J.-Y.; Zhu, J.-Q.; Xu, J.-Y.; Zhang, G.-F. High entropy alloys: A review of preparation techniques, properties and industry applications. J. Alloys Compd. 2025, 1010, 177691. [Google Scholar] [CrossRef]
- Olejarz, A.; Huo, W.Y.; Zieliński, M.; Diduszko, R.; Wyszkowska, E.; Kosińska, A.; Kalita, D.; Jóźwik, I.; Chmielewski, M.; Fang, F.; et al. Microstructure and mechanical properties of mechanically-alloyed CoCrFeNi high-entropy alloys using low ball-to-powder ratio. J. Alloys Compd. 2023, 938, 168196. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Z.; Chen, H.; Niu, M.; Cheng, J. Mechanical properties of CoCrFeNi-X (X = Ti,Sn) high entropy alloy and tribological properties in simulated seawater environment. Tribol. Int. 2025, 202, 110306. [Google Scholar] [CrossRef]
- Jiang, X.; Zeng, X.K.; Xie, W.; Liu, M.; Leng, Y. Optimizing substrate bias voltage to improve mechanical and tribological properties of ductile FeCoNiCu high entropy alloy coatings with FCC structure. J. Alloys Compd. 2024, 1004, 175972. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Mu, D.; Shen, G.; Liu, M.; Zhang, M.; Chan, S.L.I.; Liang, J.; Wang, J. Microstructure evolution and mechanical properties of CoCrFeNiAl0.3 high entropy alloy produced by ball milling in combination with thermomechanical consolidation. Mater. Charact. 2022, 187, 111833. [Google Scholar] [CrossRef]
- Yang, T.; Cai, B.; Shi, Y.; Wang, M.; Zhang, G. Preparation of nanostructured CoCrFeMnNi high entropy alloy by hot pressing sintering gas atomized powders. Micron 2021, 147, 103082. [Google Scholar] [CrossRef]
- Timmer, C.; Tillmann, W.; Wojarski, L.; Ferreira, M.P. Investigation of the applicability of Cu–Fe–Mn–Ni based high entropy and compositionally complex alloys as metal matrix composites for cobalt free hot-pressed diamond tools. J. Mater. Res. Technol. 2023, 26, 5518–5534. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Zhang, F.-L.; Pan, X.-Y.; Gao, P.; Zheng, C.-J.; Zhou, Y.-M.; Li, H.-B. Fabrication and evaluation of high-entropy alloy reinforced Fe bond diamond tool. J. Mater. Process. Technol. 2024, 328, 118419. [Google Scholar] [CrossRef]
- Shah, A.W.; Wang, K.; Siddique, J.A.; Li, W. A comprehensive review of diamond-reinforced metal matrix composites for thermal management in high-performance electronics. J. Mater. Res. Technol. 2024, 33, 8174–8197. [Google Scholar] [CrossRef]
- Mukanov, S.; Loginov, P.; Fedotov, A.; Bychkova, M.; Antonyuk, M.; Levashov, E. The Effect of Copper on the Microstructure, Wear and Corrosion Resistance of CoCrCuFeNi High-Entropy Alloys Manufactured by Powder Metallurgy. Materials 2023, 16, 1178. [Google Scholar] [CrossRef]
- Loginov, P.A.; Fedotov, A.D.; Mukanov, S.K.; Manakova, O.S.; Zaitsev, A.A.; Akhmetov, A.S.; Rupasov, S.I.; Levashov, E.A. Manufacturing of Metal–Diamond Composites with High-Strength CoCrCuxFeNi High-Entropy Alloy Used as a Binder. Materials 2023, 16, 1285. [Google Scholar] [CrossRef] [PubMed]
- Loginov, P.A.; Zaitsev, A.A.; Sidorenko, D.A.; Eganova, E.; Levashov, E. Interfacial interaction and evaluation of bonding strength between diamond and CoCrFeNi(Cu,Ti) high-entropy alloys. Diam. Relat. Mat. 2024, 151, 111849. [Google Scholar] [CrossRef]
- Tulić, S.; Waitz, T.; Čaplovičová, M.; Habler, G.; Vretenár, V.; Susi, T.; Skákalová, V. Catalytic graphitization of single-crystal diamond. Carbon 2021, 185, 300–313. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Mu, D.; Wu, Y.; Lin, Q.; Xu, X.; Huang, H. Influences of early-stage C diffusion on growth microstructures in solid-state interface reaction between CVD diamond and sputtered Cr. Mater. Charact. 2022, 196, 112603. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Mu, D.; Lin, Q.; Xu, X.; Huang, H. Growth mechanisms of interfacial carbides in solid-state reaction between single-crystal diamond and chromium. J. Mater. Sci. Technol. 2022, 144, 138–149. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, Z.; Lin, Q.; Huang, G.; Xu, X.; Huang, H.; Mu, D. Towards tailorable interface microstructure through Solid-state interface reaction between synthetic diamond grits and sputtered Ni-Cr binary alloy. Appl. Surf. Sci. 2022, 596, 153531. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Zhang, M.; Peng, P. First-principles calculations on brazed diamond with FeCoCrNi high entropy alloys doped with strong carbide-forming elements. Solid State Commun. 2022, 357, 114980. [Google Scholar] [CrossRef]
- Meng, W.; Lu, J.; Li, H.; Deng, Z.; Wang, B.; Ma, M. The interfacial reaction between diamond (100) surface and CuNi-based filler alloys containing Cr by first-principles calculations. Diam. Relat. Mat. 2023, 131, 109559. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, S.; Chen, W.; Lu, C.; Li, Y.; Li, H.; Cheng, Y.; Yang, J.; He, Y. First-principles comparative study on diamond/carbide combinations: Interfacial adhesion and bonding nature. Int. J. Refract. Hard Mater. 2024, 119, 106566. [Google Scholar] [CrossRef]
- Deng, A.; Lu, J.; Li, D.; Wang, Y. Exploring the activation energy of diamond reacting with metals and metal oxides by first-principle calculation. Diam. Relat. Mat. 2021, 118, 108522. [Google Scholar] [CrossRef]
- Sibirev, A.; Ubyivovk, E.; Belyaev, S.; Resnina, N. In situ transmission electron microscopy study of martensite boundaries movement on cooling and heating of the NiTi shape memory alloy. Mater. Lett. 2022, 319, 132267. [Google Scholar] [CrossRef]
- Resnina, N.; Sibirev, A.; Belyaev, S.; Ubyivovk, E. In situ TEM observation of the martensite interface movement on heating—Cooling—Heating of the pre-deformed NiTi shape memory alloy. Mater. Lett. 2023, 347, 134641. [Google Scholar] [CrossRef]
- Bazlov, A.I.; Tabachkova, N.Y.u.; Zolotorevsky, V.S.; Louzguine-Luzgin, D.V. Unusual crystallization of Al85Y8Ni5Co2 metallic glass observed in situ in TEM at different heating rates. Intermetallics 2018, 94, 192–199. [Google Scholar] [CrossRef]
- Shkodich, N.F.; Smoliarova, T.; Ali, H.; Eggert, B.; Rao, Z.; Spasova, M.; Tarasov, I.; Wende, H.; Ollefs, K.; Gault, B.; et al. Effect of high energy ball milling, heat treatment and spark plasma sintering on structure, composition, thermal stability and magnetism in CoCrFeNiGax (x = 0.5; 1) high entropy alloys. Acta Mater. 2025, 284, 120569. [Google Scholar] [CrossRef]
- Shim, S.H.; Pouraliakbar, H.; Lee, B.J.; Kim, Y.K.; Rizi, M.S.; Hong, S.I. Strengthening and deformation behavior of as-cast CoCrCu1.5MnNi high entropy alloy with micro-/nanoscale precipitation. Mater. Sci. Eng. A 2022, 853, 143729. [Google Scholar] [CrossRef]
- Ren, J.; Ma, Y.; Zhou, Q.; Sun, Z.; Liu, X.; Li, Y. Effect of basalt fiber particles on the holding strength and wear resistance of sintered Cu-based diamond composites. Ceram. Int. 2024, 50, 24979–24986. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, H.; Liu, B.; Liu, Y. Enhanced drilling performance of impregnated diamond bits by introducing a novel HEA binder phase. Int. J. Refract. Hard Mater. 2024, 118, 106449. [Google Scholar] [CrossRef]
- Cygan-Bączek, E.; Cygan, S.; Wyżga, P.; Novák, P.; Lapčák, L.; Romański, A. Improvement in Abrasive Wear Resistance of Metal Matrix Composites Used for Diamond–Impregnated Tools by Heat Treatment. Materials 2023, 16, 6198. [Google Scholar] [CrossRef]
- Dementyeva, G.P.; Eliokums, O.A.; Kavalerova, L.A.; Livshits, B.G.; Milyaev, I.M. Phase Transformation in an Fe-Cr-Co Alloy in the Temperature Range 600–1300 °C. Izv. vysshikh uchebnykh zavedeniy. Chernaya Metall. 1976, 5, 149–150. (In Russian) [Google Scholar]
- Arfaoui, M.; Kovács, V.K.; Radnóczi, G. Diffusionless FCC to BCC phase transformation in CoCrCuFeNi MPEA thin films. J. Alloys Compd. 2021, 863, 158712. [Google Scholar] [CrossRef]
- Arfaoui, M.; Radnóczi, G.; Kovács, V.K. Transformations in CrFeCoNiCu High Entropy Alloy Thin Films during In-Situ Annealing in TEM. Coatings 2020, 10, 60. [Google Scholar] [CrossRef]
- Eshed, E.; Choudhuri, D.; Osovski, S. M7C3: The story of a misunderstood carbide. Acta Mater. 2022, 235, 117985. [Google Scholar] [CrossRef]
- Kuptsov, K.A.; Antonyuk, M.N.; Sheveyko, A.N.; Bondarev, A.; Ignatov, S.; Slukin, P.; Dwivedi, P.; Fraile, A.; Polcar, T.; Shtansky, D. High-entropy Fe-Cr-Ni-Co-(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications. Surf. Coat. Technol. 2023, 453, 129136. [Google Scholar] [CrossRef]
- Shkodich, N.F.; Kovalev, I.D.; Kuskov, K.V.; Kovalev, D.; Vergunova, Y.; Scheck, Y.; Vadchenko, S.; Politano, O.; Baras, F.; Rogachev, A. Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy. J. Alloys Compd. 2022, 893, 161839. [Google Scholar] [CrossRef]
- Poliakov, M.V.; Kovalev, D.Y.; Volkova, L.S.; Vadchenko, S.G.; Rogachev, A.S. Evolution of the Structure and Phase Composition of High-Entropy CoCrFeNiCu Alloy during Prolonged Annealing. Phys. Met. Metallogr. 2023, 124, 1005–1016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loginov, P.A.; Fedotov, A.D.; Sheveyko, A.N.; Zaitsev, A.A.; Eganova, E.M.; Levashov, E.A. In Situ Heating TEM Study of the Interaction Between Diamond and Cu-Rich CoCrCuFeNi High-Entropy Alloy. Metals 2025, 15, 257. https://doi.org/10.3390/met15030257
Loginov PA, Fedotov AD, Sheveyko AN, Zaitsev AA, Eganova EM, Levashov EA. In Situ Heating TEM Study of the Interaction Between Diamond and Cu-Rich CoCrCuFeNi High-Entropy Alloy. Metals. 2025; 15(3):257. https://doi.org/10.3390/met15030257
Chicago/Turabian StyleLoginov, Pavel A., Alexander D. Fedotov, Alexander N. Sheveyko, Alexander A. Zaitsev, Elena M. Eganova, and Evgeny A. Levashov. 2025. "In Situ Heating TEM Study of the Interaction Between Diamond and Cu-Rich CoCrCuFeNi High-Entropy Alloy" Metals 15, no. 3: 257. https://doi.org/10.3390/met15030257
APA StyleLoginov, P. A., Fedotov, A. D., Sheveyko, A. N., Zaitsev, A. A., Eganova, E. M., & Levashov, E. A. (2025). In Situ Heating TEM Study of the Interaction Between Diamond and Cu-Rich CoCrCuFeNi High-Entropy Alloy. Metals, 15(3), 257. https://doi.org/10.3390/met15030257