Effect of Porosity on the Corrosion Behavior of FeCoNiMnCrx Porous High-Entropy Alloy in 3.5 Wt.% NaCl Solution
Abstract
:1. Introduction
2. Materials and Experimentation
2.1. Material Preparation and Characterization of the Pore Structure Parameters
2.2. Electrochemical Measurement
2.3. Immersion Test
2.4. Microstructure Characterization
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Electrochemical Corrosion Behavior and Analysis of Corrosion Shape
3.3. Analysis of Immersion Corrosion Test Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ip, Y.C.A.; Chen, J.; Tan, L.Y.; Lau, C.; Chan, Y.H.; Balasubramaniam, R.S.; Wong, W.Y.J.; Ng, K.; Tan, Z.Y.B.; Fernandez, C.J.; et al. Establishing environmental DNA and RNA protocols for the simultaneous detection of fish viruses from seawater. Environ. DNA 2023, 6, e418. [Google Scholar] [CrossRef]
- Xavier, L.A.; Fetzer, D.E.L.; de Oliveira, T.V.; Eiras, D.; Voll, F.A.P.; Vieira, R.B. Effect of stainless-steel slag concentration in the fabrication of cost-effective ceramic membranes: Seawater pre-treatment application. Ceram. Int. 2022, 48, 23273–23283. [Google Scholar] [CrossRef]
- Wu, Q.; He, G.; Wen, H.; Lin, X.; He, S.; Chang, X. Study on Cooling Water Source Seawater Filtration System of Nuclear Power Plant. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 042014. [Google Scholar] [CrossRef]
- Şimşek, T.; Akgül, Ş.; Güler, Ö.; Özkul, I.; Avar, B.; Chattopadhyay, A.K.; Canbay, C.A.; Güler, S.H. A comparison of magnetic, structural and thermal properties of NiFeCoMo high entropy alloy produced by sequential mechanical alloying versus the alloy produced by conventional mechanical alloying. Mater. Today Commun. 2021, 29, 102986. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Wu, Q. First-principles investigation on structural, electronic, magnetic, mechanical and thermodynamic properties of half-metallic Zn-based all-d-metal equiatomic quaternary Heusler alloys. Mater. Today Commun. 2023, 37, 107565. [Google Scholar] [CrossRef]
- Slámečka, K.; Šesták, P.; Vojtek, T.; Kianicová, M.; Horníková, J.; Šandera, P.; Pokluda, J. A Fractographic Study of Bending/Torsion Fatigue Failure in Metallic Materials with Protective Surface Layers. Adv. Mater. Sci. Eng. 2016, 2016, 8952657. [Google Scholar] [CrossRef]
- Dai, W.; Liu, Y.; Huang, N.; Lan, R.; Zheng, K.; Lu, Y.; Li, J.; Jiang, Y.; Sun, Y. Selective corrosion of β-Sn and intermetallic compounds in an Ag–Sn alloy at different potentials in NaCl and Na2SO4 solutions. Corros. Sci. 2023, 212, 110958. [Google Scholar] [CrossRef]
- Shanyavskiy, A. Scales of Metal Fatigue Failures and Mechanisms for Origin of Subsurface Fracture Formation. Solid State Phenom. 2016, 258, 249–254. [Google Scholar] [CrossRef]
- Cao, H.; Hou, G.; Xu, T.; Ma, J.; Wan, H.; An, Y.; Zhou, H.; Chen, J. Effect of seawater temperature on the corrosion and cavitation erosion-corrosion resistance of Al10Cr28Co28Ni34 high-entropy alloy coating. Corros. Sci. 2024, 228, 111822. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, F.; Shen, S.; Yang, K.; Han, D.; Li, Y.; Lu, C.; Zhang, Y.; Tang, X. The staggered dual-phase structure in AlCoCrFeNi2.1 eutectic high-entropy alloys for superior irradiation and corrosion resistance. Intermetallics 2024, 173, 108427. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Cao, H.; Chen, X.; Fang, Y.; Zheng, G. Enhanced tribocorrosion performance of laser-deposited Fe2CoNiCrAlTiCx high-entropy alloy coatings via in-situ graphitization in aqueous medium. Corros. Sci. 2024, 236, 112221. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, K.; Feng, L.; Cui, J.; Zhao, Y. Corrosion resistance of FeCrMnxAlCu high-entropy alloys in 0.5M H2SO4 solution. Mater. Today Commun. 2024, 40, 109864. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, X.; Li, J.; Wang, T.; Pan, X.; Yu, W.; Meng, J.; Wang, X.; Huang, J.C. Effect of annealing treatment on the mechanical properties and corrosion behaviour of Co40Cr20Ni30Al4.5Ti5Mo0.5 high-entropy alloy. Mater. Today Commun. 2024, 40, 109702. [Google Scholar] [CrossRef]
- Sun, M.; Yang, Z.; Song, S.; Zhang, J.; Lu, B. Effect of Cr content on microstructure, mechanical, and corrosion properties of CoCr FeMnNi high-entropy alloys fabricated by selective laser melting. Mater. Charact. 2024, 212, 113949. [Google Scholar] [CrossRef]
- Ni, Q.; Zhu, M.; Yuan, Y.; Guo, S. Oxidation behavior and corrosion resistance of CoCrFeNi high entropy alloy compared with FeCoNi medium entropy alloy. Mater. Chem. Phys. 2024, 325, 129758. [Google Scholar] [CrossRef]
- Heidari, E.; Atapour, M.; Obeydavi, A. The effect of Cr-content on the corrosion behavior of Ti0.5Mo0.5CoNiMnCrx high-entropy alloy thin films deposited by direct current magnetron sputtering. J. Alloy Compd. 2024, 976, 173265. [Google Scholar] [CrossRef]
- Yan, X.; Guo, H.; Yang, W.; Pang, S.; Wang, Q.; Liu, Y.; Liaw, P.K.; Zhang, T. Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties. J. Alloy Compd. 2021, 860, 158436. [Google Scholar] [CrossRef]
- Lu, C.-W.; Lu, Y.-S.; Lai, Z.-H.; Yen, H.-W.; Lee, Y.-L. Comparative corrosion behavior of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5 wt% NaCl solution. J. Alloys Compd. 2020, 842, 155824. [Google Scholar] [CrossRef]
- Li, F. Corrosion Resistance of FeCrMnAlCux High-Entropy Alloy in 0.5 Mol/L H2SO4 Solution. Available online: https://d.wanfangdata.com.cn/Periodical/xyjsclygc202401011 (accessed on 26 January 2025).
- Roundy, D.; Krenn, C.R.; Cohen, M.L.; Morris, J.J.W. Ideal Shear Strengths of fcc Aluminum and Copper. Phys. Rev. Lett. 1999, 82, 2713–2716. [Google Scholar] [CrossRef]
- Li, X.; Tang, Y.; Wang, J.; Zhang, H.; Xiong, K.; Chen, J. Unusual ordered mesoporous carbon material with short channels and big pore size: Synthesis and effective adsorption of Cr(VI). J. Porous Mater. 2022, 29, 921–930. [Google Scholar] [CrossRef]
- Li, X.; Sun, L.; Yang, J.; Liu, Y. Research on The Pore-Forming Mechanism of Porous Tial Intermetallics with Urea. IOP Conf. Ser. Mater. Sci. Eng. 2019, 612, 022010. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Fang, L.; Zhong, J.; Bai, W.; Yuan, Y.; Rong, M.; Wang, J.; Zhang, L.; Liu, L. High-throughput determination of interdiffusivity and atomic mobilities in bcc Ti–Cr–Mo alloys. J. Mater. Res. Technol. 2024, 33, 620–629. [Google Scholar] [CrossRef]
- Lekakh, S.N. Engineering Nucleation Kinetics of Graphite Nodules in Inoculated Cast Iron for Reducing Porosity. Met. Mater. Trans. B 2019, 50, 890–902. [Google Scholar] [CrossRef]
- Al-Munajjed, A.A.; Hien, M.; Kujat, R.; Gleeson, J.P.; Hammer, J. Influence of pore size on tensile strength, permeability and porosity of hyaluronan-collagen scaffolds. J. Mater. Sci. Mater. Med. 2008, 19, 2859–2864. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Melnikov, A.; Mandelis, A. Deep learning neural network approach to thermal-wave imaging of damage in solids with application to diffusivity measurements of a green (unsintered) metal powder compact slab. Measurement 2024, 235, 115004. [Google Scholar] [CrossRef]
- Zhang, T.; Hang, L.; Liu, Q.; Tao, S.; Bao, H.; Fan, H.J. Positively Charged Hollow Co Nanoshells by Kirkendall Effect Stabilized by Electron Sink for Alkaline Water Dissociation. Adv. Mater. 2024, 36, e2405386. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.; Jiang, J.; Chen, G.; Zhou, K.; Zhang, X.; Li, F.; Yuan, C.; Bao, J.; Xu, X. Microfluidic synthesis of hollow CsPbBr3 perovskite nanocrystals through the nanoscale Kirkendall effect. Nano Res. 2024, 17, 8487–8494. [Google Scholar] [CrossRef]
- Han, X.; Hou, J.; Zhang, Z.; Barber, G.C.; Qiu, F.; Chang, F.; Kou, S.-Q. Bainite kinetic energy, activation energy, and tribological behavior of austempered AISI4340 steel. J. Mater. Res. Technol. 2021, 14, 1473–1481. [Google Scholar] [CrossRef]
- Li, X.; Zhou, P.; Feng, H.; Jiang, Z.; Li, H.; Ogle, K. Spontaneous passivation of the CoCrFeMnNi high entropy alloy in sulfuric acid solution: The effects of alloyed nitrogen and dissolved oxygen. Corros. Sci. 2022, 196, 110016. [Google Scholar] [CrossRef]
- Fan, L.; Chen, H.Y.; Du, H.L.; Hou, Y.; Cheng, Q. Corrosion Resistance of Nickel-Based Composite Coatings Reinforced by Spherical Tungsten Carbide. Mater. Sci. Forum 2020, 993, 1075–1085. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Liaw, B.Y.; Zhang, J. Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations. J. Power Sources 2016, 309, 82–98. [Google Scholar] [CrossRef]
- Liang, W.; Jiang, Y.; Hongxing, D.; He, Y.; Xu, N.; Zou, J.; Huang, B.; Liu, C. The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution. Intermetallics 2011, 19, 1759–1765. [Google Scholar] [CrossRef]
- Abdullah, R.M. Investigation of ion transport in plasticized polymer electrolytes using electrical equivalent circuit (EEC) modeling. J. Mater. Sci. Mater. Electron. 2024, 35, 777. [Google Scholar] [CrossRef]
- Feng, L.; Yang, Y.; Zhao, Y.; Ma, K.; Cui, J. Corrosion behaviors and mechanism of AlxCrFeMnCu high-entropy alloys in a 3.5 wt% NaCl solution. Corros. Sci. 2024, 233, 112087. [Google Scholar] [CrossRef]
- Abdulsalam, M.I.; Presuel-Moreno, F. Investigation of crevice corrosion of metallic fastened joints in carbon fiber reinforced polymer (CFRP) exposed to coastal seawater. Anti-Corros. Methods Mater. 2021, 68, 238–247. [Google Scholar] [CrossRef]
- Bien, S.B.; Ayers, H.D. Discussion of “The Role of the Metal-Ion Concentration Cell in Crevice Corrosion” [G. J. Schafer and P. K. Foster (p. 468, Vol. 106)]. J. Electrochem. Soc. 1959, 106, 1082. [Google Scholar] [CrossRef]
- Xu, S.H.; Qiu, B. Simulation of Stochastic Fields of Corrosion Pit Depth by Cosine Trigonometric Series Model. Adv. Mater. Res. 2011, 374–377, 2250–2255. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Wang, W.; Tian, L.; Zhao, J.; Sun, J. Synergistic damage mechanisms of high-temperature metal corrosion in marine environments: A review. Prog. Org. Coat. 2024, 197, 108765. [Google Scholar] [CrossRef]
- Ben, N.-Y.; Zhang, Q.; Meng, D.-A.; Lee, M.-G. Analysis of real contact area and re-lubrication in oscillating bulk forming process by corrosion method. J. Mech. Work. Technol. 2018, 253, 178–194. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, W. Probabilistic characterisation of metal-loss corrosion growth on underground pipelines based on geometric Brownian motion process. Struct. Infrastruct. Eng. 2015, 11, 238–252. [Google Scholar] [CrossRef]
Element | Fe | Co | Ni | Mn | Cr |
---|---|---|---|---|---|
Sample 1 | 22.22 | 22.22 | 22.22 | 22.22 | 11.11 |
Sample 2 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Sample 3 | 18.18 | 18.18 | 18.18 | 18.18 | 27.27 |
Sample | icorr (A/cm2) | Ecorr (V) |
---|---|---|
Sample 1 | 6.98 × 10−5 ± 0.3458 × 10−5 | −0.3329 ± 0.0208 |
Sample 2 | 1.148 × 10−4 ± 0.0286 × 10−4 | −0.3745 ± 0.0118 |
Sample 3 | 1427 × 10−4 ± 0.0912 × 10−4 | −0.4091 ± 0.0177 |
Sample | Rs (Ω∙cm2) | Rp (Ω∙cm2) | Y0 | n |
---|---|---|---|---|
Sample 1 | 14.18 | 25.19 | 3 × 10−4 | 0.70838 |
Sample 2 | 15.42 | 18.74 | 6 × 10−4 | 0.68634 |
Sample 3 | 13.5 | 13.47 | 1.6 × 10−3 | 0.60528 |
Sample | Before | After | Change Rate (%) |
---|---|---|---|
Sample 1 | 0.9042 | 0.5329 | −41.06 |
Sample 2 | 1.6249 | 0.8626 | −46.91 |
Sample 3 | 1.7583 | 0.8770 | −50.12 |
Sample | Before | After | Change Rate (%) |
---|---|---|---|
Sample 1 | 2.46 | 1.85 | −24.67 |
Sample 2 | 5.11 | 3.79 | −25.83 |
Sample 3 | 6.08 | 4.17 | −34.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, S.; Peng, Y.; Zheng, X.; Li, D.; Nie, C.; Gong, P.; Hu, Z.; Ma, M. Effect of Porosity on the Corrosion Behavior of FeCoNiMnCrx Porous High-Entropy Alloy in 3.5 Wt.% NaCl Solution. Metals 2025, 15, 210. https://doi.org/10.3390/met15020210
Wang Y, Chen S, Peng Y, Zheng X, Li D, Nie C, Gong P, Hu Z, Ma M. Effect of Porosity on the Corrosion Behavior of FeCoNiMnCrx Porous High-Entropy Alloy in 3.5 Wt.% NaCl Solution. Metals. 2025; 15(2):210. https://doi.org/10.3390/met15020210
Chicago/Turabian StyleWang, Ying, Shuobin Chen, Yuhua Peng, Xijie Zheng, Dong Li, Cheng Nie, Pan Gong, Zhigang Hu, and Ming Ma. 2025. "Effect of Porosity on the Corrosion Behavior of FeCoNiMnCrx Porous High-Entropy Alloy in 3.5 Wt.% NaCl Solution" Metals 15, no. 2: 210. https://doi.org/10.3390/met15020210
APA StyleWang, Y., Chen, S., Peng, Y., Zheng, X., Li, D., Nie, C., Gong, P., Hu, Z., & Ma, M. (2025). Effect of Porosity on the Corrosion Behavior of FeCoNiMnCrx Porous High-Entropy Alloy in 3.5 Wt.% NaCl Solution. Metals, 15(2), 210. https://doi.org/10.3390/met15020210