Research Advances in Additively Manufactured High-Entropy Alloys: Microstructure, Mechanical Properties, and Corrosion Resistance
Abstract
1. Introduction
2. Additive Manufacturing Methods for HEAs
3. Microstructure of Additively Manufactured HEAs
3.1. Effect of Additive Manufacturing Methods on Microstructure
3.2. Effect of Composition of HEAs on Microstructure
3.3. Effect of Additively Manufactured Process on Microstructure
4. Mechanical Property
4.1. Hardness
4.2. Mechanical Properties
5. Strengthening Mechanism
6. Corrosion Resistance
6.1. Comparison of Corrosion Resistance of Cast and Additively Manufactured HEAs
6.2. Effect of Heat Treatment on Corrosion Performance
6.3. Effect of Elements and Preparation Process Parameters on Corrosion Performance
7. Summary and Outlook
- (1)
- Selection of elements
- (2)
- Other additively manufactured processes
- (3)
- Optimization of process parameters
- (4)
- For other performance studies
- (5)
- Computer predictive modelling
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cagirici, M.; Guo, S.; Ding, J.; Ramanurty, U.; Wang, P. Additive manufacturing of high-entropy alloys: Current status and challenges. Smart Mater. Manuf. 2024, 2, 1000058. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Alabtah, F.G.; Al-Hamidi, Y.; Khraisheh, M. On the laser additive manufacturing of high-entropy alloys: A critical assessment of in-situ monitoring techniques and their suitability. Mater. Des. 2023, 226, 111658. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Bagdasaryan, A.A.; Yakushchenko, I.V.; Beresnev, V.M. The structure and properties of high-entropy alloys and nitride coatings based on them. Russ. Chem. Rev. 2014, 83, 1027–1061. [Google Scholar] [CrossRef]
- Li, D.; He, J.; Tian, X.; Liu, Y.; Zhang, A.; Lian, Q.; Jin, Z.; Lu, B. Additive manufacturing: Integrated fabrication of macro/microstructures. J. Mech. Eng. 2013, 49, 129–135. [Google Scholar] [CrossRef]
- Wang, P.; Nai, M.L.S.; Sin, W.J.; Lu, S.; Zhang, B.; Bai, J.; Song, J.; Wei, J. Realizing a full volume component by in-situ welding during electron beam melting process. Addit. Manuf. 2018, 22, 375–380. [Google Scholar] [CrossRef]
- Amano, H.; Ishimoto, T.; Hagihara, K.; Suganuma, R.; Aiba, K.; Sun, S.-H.; Wang, P.; Nakano, T. Impact of gas flow direction on the crystallographic texture evolution in laser beam powder bed fusion. Virtual Phys. Prototyp. 2023, 18, e2169172. [Google Scholar] [CrossRef]
- Dobbelstein, H.; Gurevich, E.L.; George, E.P.; Ostendorf, A.; Laplanche, G. Laser metal deposition of a refractory TiZrNbHfTa high-entropy alloy. Addit. Manuf. 2018, 24, 386–390. [Google Scholar] [CrossRef]
- Ahsan, M.R.U.; Seo, G.-J.; Fan, X.; Liaw, P.K.; Motaman, S.; Haase, C.; Kim, D.B. Effects of process parameters on bead shape, microstructure, and mechanical properties in wire + arc additive manufacturing of Al0.1CoCrFeNi high-entropy alloy. J. Manuf. Process. 2021, 68, 1314–1327. [Google Scholar] [CrossRef]
- Shen, Q.; Kong, X.; Chen, X. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties. J. Mater. Sci. Technol. 2021, 74, 136–142. [Google Scholar] [CrossRef]
- Karlsson, D.; Lindwall, G.; Lundbäck, A.; Amnebrink, M.; Boström, M.; Riekehr, L.; Schuisky, M.; Sahlberg, M.; Jansson, U. Binder jetting of the AlCoCrFeNi alloy. Addit. Manuf. 2019, 27, 72–79. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, Z.; Wang, P.; Meenashisundaram, G.K.; Nai, S.M.L.; Wei, J. Fabrication of porous CoCrFeMnNi high entropy alloy using binder jetting additive manufacturing. Addit. Manuf. 2020, 35, 101441. [Google Scholar] [CrossRef]
- Lin, D.Y.; Hu, J.X.; Liu, M.Q.; Li, Z.H.; Xi, X.; Dai, J.H.; Ma, R.; Shi, Z.F.; Tan, C.W.; Li, R.S.; et al. Enhancing plasticity in laser additive manufactured high-entropy alloys: The combined effect of thermal cycle induced dissolution and twinning. Addit. Manuf. 2024, 39, 104427. [Google Scholar] [CrossRef]
- Sun, Z.; Tan, X.P.; Descoins, M.; Mangelinck, D.; Tor, S.B.; Lim, C.S. Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scr. Mater. 2019, 168, 129–133. [Google Scholar] [CrossRef]
- Wang, P.; Huang, P.; Ng, F.L.; Sin, W.J.; Lu, S.; Nai, M.L.S.; Dong, Z.; Wei, J. Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Mater. Des. 2019, 168, 107576. [Google Scholar] [CrossRef]
- Haase, C.; Tang, F.; Wilms, M.B.; Weisheit, A.; Hallstedt, B. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys-Towards rapid alloy screening and design. Mater. Sci. Eng. A 2019, 688, 180–189. [Google Scholar] [CrossRef]
- Shiratori, H.; Fujieda, T.; Yamanaka, K.; Koizumi, Y.; Kuwabara, K.; Kato, T.; Chiba, A. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Mater. Sci. Eng. A 2016, 656, 39–46. [Google Scholar] [CrossRef]
- Luo, S.C.; Gao, P.; Yu, H.C.; Yang, J.J.; Wang, Z.M.; Zeng, X.Y. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior. J. Alloys Compd. 2019, 771, 387–397. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Xu, Y.; Liu, Z.Y.; Qian, B.; Xuan, F.Z. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects. Powder Technol. 2020, 360, 509–521. [Google Scholar] [CrossRef]
- Kunce, I.; Polanski, M.; Bystzycki, J. Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrogen Energy 2014, 39, 9904–9910. [Google Scholar] [CrossRef]
- Thapliyal, S.; Agrawal, P.; Agrawal, P.; Nene, S.S.; Mishra, R.S.; Mcwilliams, B.A.; Cho, K.C. Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing. Acta Mater. 2021, 219, 117271. [Google Scholar] [CrossRef]
- Yao, H.; Tan, Z.; He, D.Y.; Zhou, Z.L.; Zhou, Z.; Xue, Y.F.; Cui, L.; Wang, G.H.; Yang, Y. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting. J. Alloys Compd. 2020, 813, 152196. [Google Scholar] [CrossRef]
- Li, C.W.; Chang, K.C.; Yeh, A.C. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting. J. Alloys Compd. 2019, 782, 440–450. [Google Scholar] [CrossRef]
- Sarswat, P.; Smith, T.; Sarkar, S.; Murali, A.; Free, M. Design and Fabrication of New High Entropy Alloys for Evaluating Titanium Replacements in Additive Manufacturing. Materials 2020, 13, 3001. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yu, Z.; Hu, W.; Lu, Y.; Zhu, Z.; Ji, Y.; Lu, Y.; Qin, Z.; Lu, X. In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing. J. Alloys Compd. 2020, 847, 156563. [Google Scholar] [CrossRef]
- Zhou, P.F.; Xiao, D.H.; Wu, Z.; Ou, X.Q. Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders. Mater. Sci. Eng. A 2019, 739, 86–89. [Google Scholar] [CrossRef]
- Peyrouzet, F.; Hachet, D.; Soulas, R.; Navone, C.; Godet, S.; Gorsse, S. Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: Printability, microstructure, and mechanical properties. J. Miner. Met. Mater. Soc. 2019, 71, 3443–3451. [Google Scholar] [CrossRef]
- Sun, K.; Peng, W.; Yang, L.; Fang, L. Effect of SLM processing parameters on microstructures and mechanical properties of Al0.5CoCrFeNi high entropy alloys. Metals 2020, 10, 292. [Google Scholar] [CrossRef]
- Lin, W.-C.; Chang, Y.-J.; Hsu, T.-H.; Gorsse, S.; Sun, F.; Furuhara, T.; Yeh, A.-C. Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment. Addit. Manuf. 2020, 36, 101601. [Google Scholar] [CrossRef]
- Ewald, S.; Kies, F.; Hermsen, S.; Voshage, M.; Haase, C.; Schleifenbaum, J.H. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion. Materials 2019, 12, 1706. [Google Scholar] [CrossRef] [PubMed]
- Sarswat, P.K.; Sarkar, S.; Murali, A.; Huang, W.; Tan, W.; Free, M.L. Additive manufactured new hybrid high entropy alloys derived from the AlCoFeNiSmTiVZr system. Appl. Surf. Sci. 2019, 476, 242–258. [Google Scholar] [CrossRef]
- Malatji, N.; Popoola, A.P.I.; Lengopeng, T.; Pityana, S. Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. Int. J. Miner. Metall. Mater. 2020, 27, 1332–1340. [Google Scholar] [CrossRef]
- Li, R.; Niu, P.; Yuan, T.; Cao, P.; Chen, C.; Zhou, K. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property. J. Alloys Compd. 2018, 746, 125–134. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Z.G.; Chen, H.; Wang, A.G.; Liu, J.Q.; Liu, H.W.; Zhang, R.K.; Nai, S.L.M.; Primig, S.; Babu, S.S.; et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Mater. 2020, 196, 609–625. [Google Scholar] [CrossRef]
- Chew, Y.; Bi, G.; Zhu, Z.; Ng, F.; Weng, F.; Liu, S.; Nai, S.; Lee, B. Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 2019, 744, 137–144. [Google Scholar] [CrossRef]
- Cagirici, M.; Wang, P.; Ng, F.L.; Nai, M.L.S.; Ding, J.; Wei, J. Additive manufacturing of high-entropy alloys by thermophysical calculations and in situ alloying. J. Mater. Sci. Technol. 2021, 94, 53–66. [Google Scholar] [CrossRef]
- Huser, G.; Demirci, I.; Aubry, P.; Guillot, I.; Perrière, L.; Rigal, E.; Maskrot, H. Study of the elaboration of high entropy material from powder by laser additive manufacturing. Procedia CIRP 2020, 94, 270–275. [Google Scholar] [CrossRef]
- Ishimoto, T.; Ozasa, R.; Nakano, K.; Weinmann, M.; Schnitter, C.; Stenzel, M.; Matsugaki, A.; Nagase, T.; Matsuzaka, T.; Todai, M.; et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scr. Mater. 2021, 194, 113658. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.Z.; Huang, S.; Zhu, S.; Wang, F.; Li, D.C. Manufacturing and Analysis of High-Performance Refractory High-Entropy Alloy via Selective Laser Melting (SLM). Materials 2019, 12, 720. [Google Scholar] [CrossRef]
- Wang, B.W.; Luo, P.; Zhang, L.J.; Lu, B.H. Selective laser melting of multi principal NiCrWFeTi alloy: Processing, microstructure and performance. Mater. Sci. Forum 2019, 944, 182–189. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, X.; Wang, D.; Zhu, W.; Li, J.; Zhao, Y.F. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment. Mater. Sci. Eng. A 2019, 743, 773–784. [Google Scholar] [CrossRef]
- Kuwabara, K.; Shiratori, H.; Fujieda, T.; Yamanaka, K.; Koizumi, Y.; Chiba, A. Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting. Addit. Manuf. 2018, 23, 264–271. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, R.; Wei, B.; Ni, S.; Liu, Y.; Song, M. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting. Mater. Charact. 2018, 144, 605–610. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Nguyen, Q.B.; Ng, F.L.; An, X.H.; Liao, X.Z.; Liaw, P.K.; Nai, S.M.L.; Wei, J. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr. Mater. 2018, 154, 20–24. [Google Scholar] [CrossRef]
- Zhang, W.; Chabok, A.; Kooi, B.J.; Pei, Y. Additive manufactured high entropy alloys: A review of the microstructure and properties. Mater. Des. 2022, 220, 110875. [Google Scholar] [CrossRef]
- Joseph, J.; Jarvis, T.; Wu, X.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 2015, 633, 184–193. [Google Scholar] [CrossRef]
- Joseph, J.; Hodgson, P.; Jarvis, T.; Wu, X.; Stanford, N.; Fabijanic, D.M. Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 2018, 733, 59–70. [Google Scholar] [CrossRef]
- Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloys Compd. 2017, 726, 885–895. [Google Scholar] [CrossRef]
- Wei, F.; Wei, S.; Lau, K.B.; Teh, W.H.; Lee, J.J.; Seng, H.L.; Tan, C.C.; Wang, P.; Ramamurty, U. Compositionally graded AlxCoCrFeNi high-entropy alloy manufactured by laser powder bed fusion. Materialia 2022, 21, 101308. [Google Scholar] [CrossRef]
- Gwalani, B.; Gangireddy, S.; Shukla, S.; Yannetta, C.J.; Valentin, S.G.; Mishra, R.S.; Banerjee, R. Compositionally graded high entropy alloy with a strong front and ductile back. Mater. Today Commun. 2019, 20, 100602. [Google Scholar]
- Zhang, D.; Li, Q.; Sun, R.; Chang, C.; Liu, B.; Ma, X. Effect of Mn addition on microstructure and corrosion behavior of AlCoCrFeNi high-entropy alloy. Intermetallics 2024, 167, 108236. [Google Scholar] [CrossRef]
- Tong, Z.P.; Liu, H.L.; Jiao, J.F.; Zhou, W.F.; Yang, Y.; Ren, X.D. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: Microstructural evolution, high-temperature oxidation behavior and mechanism. Opt. Laser Technol. 2020, 130, 106326. [Google Scholar] [CrossRef]
- Tong, Z.P.; Ren, X.D.; Jiao, J.F.; Zhou, W.F.; Ren, Y.P.; Ye, Y.X.; Larson, E.A.; Gu, J.Y. Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property. J. Alloys Compd. 2019, 785, 1144–1159. [Google Scholar] [CrossRef]
- Guan, S.; Wan, D.; Solberg, K.; Berto, F.; Welo, T.; Yue, T.M.; Chan, K.C. Additive manufacturing of fine-grained and dislocation-populated CrMnFeCoNi high entropy alloy by laser engineered net shaping. J. Mater. Sci. Eng. A 2019, 761, 138056. [Google Scholar] [CrossRef]
- Xu, Z.L.; Zhang, H.; Li, W.H.; Mao, A.Q.; Wang, L.; Song, G.S.; He, Y.Z. Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting. Addit. Maanuf. 2019, 28, 766–771. [Google Scholar] [CrossRef]
- Gwalani, B.; Soni, V.; Waseem, O.A.; Mantri, S.A.; Banerjee, R. Laser additive manufacturing of compositionally graded AlCrFeMoVx (x = 0 to 1) high-entropy alloy system. Opt. Laser. Technol. 2019, 113, 330–337. [Google Scholar] [CrossRef]
- Wu, J.W.; Guo, Y.X.; Wang, F.P.; Shang, X.J.; Zhang, J.; Liu, Q.B. A D019 precipitate strengthened laser additively manufactured V and Nb bearing CoCrFeNi based high entropy alloys. Mater. Des. 2023, 235, 112464. [Google Scholar] [CrossRef]
- Dobbelstein, H.; Gurevich, E.L.; George, E.P.; Ostendorf, A.; Laplanche, G. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Addit. Manuf. 2019, 25, 252–262. [Google Scholar] [CrossRef]
- Tseng, K.K.; Juan, C.C.; Tso, S.; Chen, H.C.; Tsai, C.W.; Yeh, J.W. Effects of Mo, Nb, Ta, Ti, and Zr on Mechanical Properties of Equiatomic Hf-Mo-Nb-Ta-Ti-Zr Alloys. Entropy 2019, 21, 15. [Google Scholar] [CrossRef]
- Li, J.F.; Xiang, S.; Luan, H.W.; Amar, A.; Liu, X.; Lu, S.Y.; Zeng, Y.Y.; Le, G.M.; Wang, X.Y.; Qu, F.S.; et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition. J. Mater. Sci. Technol. 2019, 35, 2430–2434. [Google Scholar] [CrossRef]
- Zhang, L.F.; Gao, M.D.; Shan, X.Y.; Shen, Q.Q.; Li, H.Z.; Li, Q.; Guan, B.Y.; Gao, R. synchronously enhancing the strength and ductility of CrMnFeCoNi high-entropy alloy with WC addition fabricated by laser additive manufacturing. Addit. Manuf. 2024, 31, 3212–3225. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.; Liu, B.; Yi, D.; Yang, X.; Zhang, W.; Chen, G.; Liu, Y.; Bai, P. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J. Alloys Compd. 2019, 788, 485–494. [Google Scholar] [CrossRef]
- Li, B.; Qian, B.; Xu, Y.; Liu, Z.; Xuan, F. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater. Lett. 2019, 252, 88–91. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Yang, B. Grain refinement and localized amorphization of additively manufactured high-entropy alloy matrix composites reinforced by nano ceramic particles via selective-laser-melting/remelting. Compos. Commun. 2020, 19, 56–60. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Agrawal, P.; Haridas, R.S.; Thapliyal, S.; Yadav, S.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Metastable high entropy alloys: An excellent defect tolerant material for additive manufacturing. Mater. Sci. Eng. A 2021, 826, 142005. [Google Scholar] [CrossRef]
- Guo, L.; Gu, J.; Gan, B.; Ni, S.; Bi, Z.; Wang, Z.; Song, M. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a selective laser melted FeCoCrNiMn-(N,Si) high entropy alloy. J. Alloys Compd. 2021, 865, 158892. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Rehman, E.U. Laser-aided additive manufacturing of high entropy alloys: Processes, properties, and emerging applications. Addit. Manuf. 2022, 78, 131–171. [Google Scholar] [CrossRef]
- Park, J.M.; Choe, J.; Kim, J.G.; Bae, J.W.; Moon, J.; Yang, S.; Kim, K.T.; Yu, J.H.; Kim, H.S. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater. Res. Lett. 2019, 8, 1–7. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, Y.; Zhou, C.; Li, S.; Wu, W.; Song, M.; Liu, B.; Liang, X.; Liaw, P.K. Microstructures and mechanical properties of C-containing FeCoCrNi high entropy alloy fabricated by selective laser melting. Intermetallics 2018, 94, 165–171. [Google Scholar] [CrossRef]
- Zhu, Z.G.; An, X.H.; Lu, W.J.; Li, Z.M.; Ng, F.L.; Liao, X.Z.; Ramamurty, U.; Nai, S.M.L.; Wei, J. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy. Mater. Res. Lett. 2019, 7, 453–459. [Google Scholar] [CrossRef]
- Akinwande, A.A.; Balogun, O.A.; Adediran, A.A.; Adesina, O.S.; Romanovski, V.; Jen, T.C. Experimental analysis, statistical modeling, and parametric optimization of quinary-(CoCrFeMnNi) 100-x/TiCx high-entropy-alloy (HEA) manufacturing by laser additive manufacturing. Results Eng. 2023, 17, 100802. [Google Scholar] [CrossRef]
- Guan, S.; Wan, D.; Solberg, K.; Berto, F.; Welo, T.; Yue, T.; Chan, K. Additively manufactured CrMnFeCoNi/AlCoCrFeNiTi0.5 laminated high-entropy alloy with enhanced strength-plasticity synergy. Scr. Mater. 2020, 183, 133–138. [Google Scholar] [CrossRef]
- Li, J.; Craeghs, W.; Jing, C.; Gong, S.; Shan, F. Microstructure and physical performance of laser-induction nanocrystals modified high-entropy alloy composites on titanium alloy. Mater. Des. 2017, 117, 363–370. [Google Scholar] [CrossRef]
- Li, J.; Ye, Z.; Fu, J.; Qi, W.; Tian, Y.; Liu, L.; Wang, X. Microstructure evolution, texture and laser surface HEACs of Al-Mg-Si alloy for light automobile parts. Mater. Charact. 2020, 160, 110093. [Google Scholar] [CrossRef]
- Niu, P.; Li, R.; Zhu, S.; Wang, M.; Chen, C.; Yuan, T. Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting. Opt. Laser Technol. 2020, 127, 106147. [Google Scholar] [CrossRef]
- Sabban, R.; Dash, K.; Suwas, S.; Murty, B.S. Strength-ductility synergy in high entropy alloys by tuning the thermo-mechanical process parameters: A comprehensive review. J. Indian Inst. Sci. 2022, 102, 91–116. [Google Scholar] [CrossRef]
- Xiang, S.; Li, J.; Luan, H.; Amar, A.; Lu, S.; Li, K.; Zhang, L.; Liu, X.; Le, G.; Wang, X.; et al. Effects of process parameters on microstructures and tensile properties of laser melting deposited CrMnFeCoNi high entropy alloys. Mater. Sci. Eng. A 2019, 743, 412–417. [Google Scholar] [CrossRef]
- Jin, M.; Piglione, A.; Dovgyy, B.; Hosseini, E.; Hooper, P.A.; Holdsworth, S.R.; Pham, M.-S. Cyclic plasticity and fatigue damage of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion. Addit. Manuf. 2020, 36, 101584. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zhang, H.; Li, D.C.; Chen, Z.H.; Huang, S.; Lu, Z.L.; Yan, H.Q. WxNbMoTa Refractory High-Entropy Alloys Fabricated by Laser Cladding Deposition. Materials 2019, 12, 533. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; Shang, X.J.; Liu, Q.B. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings. Surf. Coat. Technol. 2018, 344, 353–358. [Google Scholar] [CrossRef]
- Brif, Y.; Thomas, M.; Todd, I. The use of high-entropy alloys in additive manufacturing. Scr. Mater. 2015, 99, 93–96. [Google Scholar] [CrossRef]
- Kuzminova, Y.O.; Firsov, D.G.; Dagesyan, S.A.; Konev, S.D.; Sergeev, S.N.; Zhilyaev, A.P.; Kawasaki, M.; Akhatov, I.S.; Evlashin, S.A. Fatigue behavior of additive manufactured CrFeCoNi medium-entropy alloy. J. Alloys Compd. 2021, 863, 158609. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B.; Chen, B.; Xuan, F. High-cycle fatigue induced twinning in CoCrFeNi high-entropy alloy processed by laser powder bed fusion additive manufacturing. Addit. Manuf. 2023, 61, 103319. [Google Scholar] [CrossRef]
- Ocelík, V.; Janssen, N.; Smith, S.N.; De Hosson, J.T.M. Additive manufacturing of high-entropy alloys by laser processing. J. Miner. Met. Mater. Soc. 2016, 68, 1810–1818. [Google Scholar] [CrossRef]
- Niu, P.D.; Li, R.D.; Yuan, T.C.; Zhu, S.Y.; Chen, C.; Wang, M.B.; Huang, L. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics 2019, 104, 24–32. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, Y.; Liu, B.; Li, J.; Fang, Q. Precipitation behavior of selective laser melted FeCoCrNiC0.05 high entropy alloy. Intermetallics 2019, 106, 20–25. [Google Scholar] [CrossRef]
- Chen, P.; Li, S.; Zhou, Y.; Yan, M.; Attallah, M.M. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying. J. Mater. Sci. Technol. 2020, 43, 40–43. [Google Scholar] [CrossRef]
- Guo, J.; Goh, M.; Zhu, Z.; Lee, X.; Nai, M.L.S.; Wei, J. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater. Des. 2018, 153, 211–220. [Google Scholar] [CrossRef]
- Piglione, A.; Dovgyy, B.; Liu, C.; Gourlay, C.M.; Hooper, P.A.; Pham, M.S. Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion. Mater. Lett. 2018, 224, 22–25. [Google Scholar] [CrossRef]
- Gu, P.F.; Qi, T.B.; Chen, L.; Ge, T.; Ren, X.D. Manufacturing and analysis of VNbMoTaW refractory high-entropy alloy fabricated by selective laser melting. Int. J. Refract. Met. Hard Mater. 2022, 105, 834. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.Z.; Cai, J.L.; Zheng, S.S.; Liu, Q.B. evolution of refractory MoFeCrTiWAlNb3 eutectic high-entropy alloy coating by laser cladding. Mater. Des. 2021, 129, 107039. [Google Scholar]
- Wang, F.; Yuan, T.C.; Li, R.D.; Lin, S.Q.; Niu, P.D.; Cristino, V. Effect of Mo on the morphology, microstructure and mechanical properties of NbTa0.5TiMox refractory high entropy alloy fabricated by laser powder bed fusion using elemental mixed powders. Int. J. Refract. Met. Hard Mater. 2023, 111, 106107. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Wang, H.; Li, Z.; Cheng, X.; Zhang, B.; Li, J.; Ran, X. Mitigating hot-cracking of laser melted CoCrFeNiMnTix high-entropy alloys. Mater. Lett. 2022, 314, 131771. [Google Scholar] [CrossRef]
- Kunce, I.; Polanski, M.; Karczewski, K.; Plocinski, T.; Kurzydlowski, K.J. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping. J. Alloys Compd. 2015, 648, 751–758. [Google Scholar] [CrossRef]
- Sistla, H.R.; Newkirk, J.W.; Liou, F.F. Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2 x (x=0.3, 1) high entropy alloys. Mater. Des. 2015, 81, 113–121. [Google Scholar] [CrossRef]
- Sui, Q.; Wang, Z.; Wang, J.; Xu, S.; Zhao, F.; Gong, L.; Liu, B.; Liu, J.; Liu, G. The microstructure and mechanical properties of the additive manufactured AlCoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2022, 833, 142507. [Google Scholar] [CrossRef]
- Peng, H.; Xie, S.; Niu, P.; Zhang, Z.; Yuan, T.; Ren, Z.; Wang, X.; Zhao, Y.; Li, R. Additive manufacturing of Al0.3CoCrFeNi high-entropy alloy by powder feeding laser melting deposition. J. Alloys Compd. 2021, 862, 158286. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Y.; Liu, Q.; Shang, X. A novel D022 precipitation-hardened Ni2.1CoCrFe0.5Nb0.2 high entropy alloy with outstanding tensile properties by additive manufacturing. Virtual Phys. Prototyp. 2023, 18, e2147553. [Google Scholar] [CrossRef]
- Su, B.; Li, J.; Yang, C.; Zhang, Y.S.; Li, Z.; Zhang, Y.H. Microstructure and mechanical properties of a refractory AlMo0.5NbTa0.5TiZr high-entropy alloy manufactured by laser-directed energy deposition. Mater. Lett. 2023, 335, 133748. [Google Scholar] [CrossRef]
- Xiang, S.; Luan, H.; Wu, J.; Yao, K.F.; Li, J.; Liu, X.; Tian, Y.; Mao, W.; Bai, H.; Le, G.; et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J. Alloys Compd. 2019, 773, 387–392. [Google Scholar] [CrossRef]
- Wang, Z.W.; Gu, J.; An, D.Y.; Liu, Y.; Song, M. Characterization of the microstructure and deformation substructure evolution in a hierarchal high-entropy alloy by correlative EBSD and ECCI. Intermetallics 2020, 121, 106788. [Google Scholar] [CrossRef]
- Hou, Y.X.; Liu, T.; He, D.D.; Li, Z.J.; Chen, L.; Su, H.H.; Fu, P.X.; Dai, P.Q.; Huang, W.D. Sustaining strength-ductility synergy of SLM Fe50Mn30Co10Cr10 metastable high-entropy alloy by Si addition. Intermetallics 2022, 145, 107565. [Google Scholar] [CrossRef]
- Amar, A.; Li, J.F.; Xiang, S.; Liu, X.; Zhou, Y.Z.; Le, G.M.; Wang, X.Y.; Qu, F.S.; Ma, S.Y.; Dong, W.M.; et al. Additive manufacturing of high-strength CrMnFeCoNi-based High Entropy Alloys with TiC addition. Intermetallics 2019, 109, 162–166. [Google Scholar] [CrossRef]
- Kim, Y.K.; Baek, M.S.; Yang, S.; Lee, K.A. In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy. Addit. Manuf. 2021, 38, 101832. [Google Scholar] [CrossRef]
- Chen, P.; Yang, C.; Li, S.; Attallah, M.M.; Yan, M. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion. Mater. Des. 2020, 194, 108966. [Google Scholar] [CrossRef]
- Fujieda, T.; Chen, M.; Shiratori, H.; Kuwabara, K.; Yamanaka, K.; Koizumi, Y.; Chiba, A.; Watanabe, S. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Addit. Manuf. 2019, 25, 412–420. [Google Scholar] [CrossRef]
- Lin, D.; Xu, L.; Li, X.; Jing, H.; Qin, G.; Pang, H.; Minami, F. A si-containing FeCoCrNi high- entropy alloy with high strength and ductility synthesized in situ via selective laser melting. Addit. Manuf. 2020, 35, 101340. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Xi, S.; Chen, Z.; Wei, P.; He, C.; Li, T.; Gao, Y.; Wu, H. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility. Mater. Sci. Eng. A 2019, 767, 138394. [Google Scholar] [CrossRef]
- Gao, X.; Lu, Y. Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater. Lett. 2019, 236, 77–80. [Google Scholar] [CrossRef]
- Melia, M.A.; Carroll, J.D.; Whetten, S.R.; Esmaeely, S.N.; Locke, J.; White, E.; Anderson, I.; Chandross, M.; Michael, J.R.; Argibay, N.; et al. Mechanical and corrosion properties of additively manufactured CoCrFeMnNi high entropy alloy. Addit. Manuf. 2019, 29, 100833. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, S.; Xiong, Z.; Liang, Y.J.; Xue, Y.; Wang, L. Enabling stronger eutectic high-entropy alloys with larger ductility by 3D printed directional lamellae. Addit. Manuf. 2021, 39, 101901. [Google Scholar] [CrossRef]
- Fujieda, T.; Shiratori, H.; Kuwabara, K.; Kato, T.; Yamanaka, K.; Koizumi, Y.; Chiba, A. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Mater. Lett. 2015, 159, 12–15. [Google Scholar] [CrossRef]
- Nartu, M.S.K.K.Y.; Alam, T.; Dasari, S.; Mantri, S.A.; Gorsse, S.; Siller, H.; Dahotre, N.; Banerjee, R. Enhanced tensile yield strength in laser additively manufactured Al0.3CoCrFeNi high entropy alloy. Materialia 2020, 9, 100522. [Google Scholar] [CrossRef]
- Lin, D.; Xu, L.; Han, Y.; Zhang, Y.; Jing, H.; Zhao, L.; Minami, F. Structure and mechanical properties of a FeCoCrNi high-entropy alloy fabricated via selective laser melting. Intermetallics 2020, 127, 106963. [Google Scholar] [CrossRef]
- Song, M.; Zhou, R.; Gu, J.; Wang, Z.; Ni, S.; Liu, Y. Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Appl. Mater. Today 2020, 18, 100498. [Google Scholar] [CrossRef]
- Luo, S.; Su, Y.; Wang, Z. Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting. Sci. China Mater. 2020, 63, 1279–1290. [Google Scholar] [CrossRef]
- Ma, Z.H.; Zhai, Q.; Wang, K.L.; Chen, G.X.; Yin, X.T.; Zhang, Q.X.; Meng, L.T.; Wang, S.H.; Wang, L. Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: Mechanical property enhancement and corrosion resistance improvement. J. Mater. Res. Technol. 2021, 16, 899–911. [Google Scholar] [CrossRef]
- Yang, C.C.; Chau, J.L.H.; Weng, C.J.; Chen, C.S.; Chou, Y.H. Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Mater. Chem. Phys. 2017, 202, 151–158. [Google Scholar] [CrossRef]
- Pegues, J.W.; Melia, M.A.; Puckett, R.; Whetten, S.R.; Argibay, N.; Kustas, A.B. Exploring additive manufacturing as a high-throughput screening tool for multiphase high entropy alloys. Addit. Manuf. 2021, 37, 101598. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Wang, J.; Wu, Q.; Chen, D.; Han, B.; Li, J.; Wang, J.; Kai, J.J. Abnormal γ′′-ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scr. Mater. 2018, 146, 281–285. [Google Scholar] [CrossRef]
- Yuan, B.; Dong, Y.; Li, C.; Yang, Y.; Zhang, P. Excellent strengthening effect of L12 precipitates on the selective laser melting Al0.3CoCrFeNiCu high entropy alloy via annealing treatment. Mater. Lett. 2021, 304, 130628. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Li, Y.; Wang, J.; Li, Z.; Cheng, X. Effect of Al addition on the microstructure and hardness of the (AlxCoCrFe)50Ni high-entropy alloy prepared by directed energy deposition technique. Mater. Lett. 2021, 285, 128778. [Google Scholar] [CrossRef]
- He, F.; Chen, D.; Han, B.; Wu, Q.; Wang, Z.; Wei, S.; Wei, D.; Wang, J.; Liu, C.; Kai, J.-J. Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Mater. 2019, 167, 275–286. [Google Scholar] [CrossRef]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196. [Google Scholar] [CrossRef]
- Liu, S.Q.; Wan, D.; Guan, S.; Fu, Y.Q.; Zhang, Z.L.; He, J.Y. comparative study on nanoscale mechanical properties of CrMnFeCoNi high-entropy alloys fabricated by casting and additive manufacturing. J. Mater. Res. Technol. 2024, 22, 1211–1219. [Google Scholar] [CrossRef]
- Qiu, Z.; Yao, C.; Feng, K.; Li, Z.; Chu, P.K. Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process. Int. J. Lightweight Mater. Manuf. 2018, 1, 33–39. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, X.; Zhai, C.S.; Jiang, S.N.; Emre, A.; Zhang, X.; Hua, X.J. Microstructure evolution and electrochemical corrosion behavior of FeCrCoNiMoB1.1Si1.2 high-entropy alloy coating via laser cladding. Electrochim. Acta 2024, 507, 145153. [Google Scholar] [CrossRef]
- Pang, Y.F.; An, L.B.; Shao, G.H.; Wang, K.; Mi, Y.Y.; Du, X.D. Effect of heat treatment temperature on microstructure and electrochemical behavior of additive-manufactured AlCoCrFeNi high entropy alloy. J. Mater. Res. Technol. 2024, 30, 1228–1240. [Google Scholar] [CrossRef]
- Wang, Q.; Amar, A.; Jiang, C.; Luan, H.; Zhao, S.; Zhang, H.; Le, G.; Liu, X.; Wang, X.; Yang, X.; et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: Prospective material for low temperature and corrosion resistant applications. Intermetallics 2020, 119, 106727. [Google Scholar] [CrossRef]
- Xia, S.; Xia, Z.; Zhao, D.; Xie, Y.; Liu, X.; Wang, L. Microstructure formation mechanism and corrosion behavior of FeCrCuTiV two-phase high entropy alloy prepared by different processes. Fusion Eng. Des. 2021, 172, 112792. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Sheikh, S.; Ou, P.; Chen, D.C.; Hu, Q.; Guo, S. Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high entropy in aqueous chloride solutions. Electrochem. Commun. 2019, 98, 63–68. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, K.; Davies, C.; Wu, X. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. J. Alloys Compd. 2017, 694, 971–981. [Google Scholar] [CrossRef]
- Xu, Z.L.; Zhang, H.; Du, X.J.; He, Y.Z.; Luo, H.; Song, G.S.; Mao, L.; Zhou, T.W.; Wang, L.L. Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing. Corros. Sci. 2021, 177, 108954. [Google Scholar] [CrossRef]
- Thapliyal, S.; Nene, S.S.; Agrawal, P.; Wang, T.; Morphew, C.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing. Addit. Manuf. 2020, 36, 101455. [Google Scholar] [CrossRef]
- Nene, S.S.; Frank, M.; Liu, K.; Sinha, S.; Mishra, R.S.; McWilliams, B.A.; Cho, K.C. Corrosion-resistant high entropy alloy with high strength and ductility. Scr. Mater. 2019, 166, 168–172. [Google Scholar] [CrossRef]
- Fujieda, T.; Shiratori, H.; Kuwabara, K.; Hirota, M.; Kato, T.; Yamanaka, K.; Koizumi, Y.; Chiba, A.; Watanabe, S. CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater. Lett. 2016, 189, 148–151. [Google Scholar] [CrossRef]
- Sarkar, S.; Sarswat, P.K.; Free, M.L. Elevated temperature corrosion resistance of additive manufactured single phase AlCoFeNiTiV0.9Sm0.1 and AlCoFeNiV0.9Sm0.1 HEAs in a simulated syngas atmosphere. Addit. Manuf. 2019, 30, 100902. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.Z.; Xin, H.Y.; Li, X.M.; Chen, X.Z. Complex multiphase predicting of additive manufactured high entropy alloys based on data augmentation deep learning. J. Mater. Res. Technol. 2024, 28, 2388–2401. [Google Scholar] [CrossRef]
Alloys | Process | Microstructure | Ref |
---|---|---|---|
FeCoCrNiMo0.5 | LDED | Columnar crystals | [14] |
FeCoCrNiMo0.5 | LPBF | Columnar crystals | [14] |
CrMnFeCoNi | LPBF | Layered dendrites | [17] |
AlCoCrFeNi | EPBF | Equiaxed crystals | [18] |
TiNp+ CrMnFeCoNi | LPBF | Columnar crystals | [19] |
CrMnFeCoNi | DED-LB | Dendritic grains | [20] |
TiZrNbMoV | PBF | Dendritic grains | [21] |
FeMnCoCrSi | PBF | Columnar dendrites | [22] |
AlCrFeNiV | PBF | Columnar crystals | [23] |
AlCoCrFeNi | EPBF | Equiaxed crystals | [18] |
AlCrFeNiV | LPBF | Columnar grains, Subgrains | [23] |
NiAlCoCrCuFe | LPBF | Dendritic grains | [24] |
AlCoCrFeNiMn | LPBF | Equiaxed grains | [25] |
AlCrMnFeCoNi | DED-LB | Columnar grains | [26] |
Al0.5FeCoCrNi | LPBF | Columnar grains, Equiaxed grains | [27] |
Al0.3CoCrFeNi | LPBF | Columnar grains | [28] |
Al0.5CoCrFeNi | LPBF | Dendritic grains | [29] |
Al0.2Co1.5CrFeNi1.5Ti0.3 | LPBF | Equiaxed grains | [30] |
CxAl0.26CoFeMnNi | LPBF | Dendritic grains | [31] |
AlCoFeNiSmTiVZr | LPBF | Equiaxed grains, Cauliflower-like grains | [32] |
AlCrFeNiCuNbx | DED-LB | Dendritic grains | [33] |
CoCrFeMnNi | LPBF | Columnar grains, Equiaxed grains | [34] |
CrMnFeCoNi | LPBF | Nanograins | [35] |
CoCrFeNiMn | LAAM | Columnar grains, Equiaxed grains | [36] |
CoCrFeNiMn | LPBF | Columnar grains, Equiaxed grains | [16] |
CoCrFeNiMnTix | PBF | Columnar grains | [37] |
CoCrFeNiMn | PBF | Columnar grains, Equiaxed grains | [38] |
TiNbTaZrMo | LPBF | Columnar grains, Equiaxed grains | [39] |
NbMoTaW | LPBF | Lamellar martensite grains | [40] |
NiCrWFeTi | LPBF | Columnar grains | [41] |
Materials | Methods | Scanning Speed (mm/s) | Power (W) | Microstructural Characteristics | Ref |
---|---|---|---|---|---|
(CoCrFeMnNi) 100 −x /TiCx | PFB | / | 100 400 700 | Dendritic structure composed of FCC and TiC phases | [73] |
CrFeCoNi | PBF | 800 | 400 | Honeycomb and columnar subgrain structures | [44] |
CrFeCoNi | PBF | 800–2000 | 200–400 | Single-phase FCC structure | [71] |
CrMnFeCoNi | DED-LB | 8.3 | 1000 | Refined equiaxed grains | [61] |
CrMnFeCoNi | PBF | 200–1200 | 200 | Refined equiaxed grains | [20] |
CrMnFeCoNi | PBF | 200, 600 | 90 | Fine grains | [70] |
AlCoCrFeNiCu | PBF | 90 | 140 | Dendrites, FCC phase | [24] |
FeCoCrAlCu | DED | 40–20 | 100–2500 | Ultrafine nanograins | [75] |
FeCoCrAlCu | DED | 1–15 | 1000–3000 | Fibrous fine microstructure | [76] |
CrMnFeCoNi | PBF | 800 | 370 | Fine dendritic grains | [17] |
HEAs | Method | Hardness(HV) | Ref |
---|---|---|---|
CrFeCoNi | PBF | 205–238 | [83] |
CrFeCoNi | PBF | 251–267 | [84] |
CrFeCoNi | PBF | 187–196 | [85] |
AlCoCrFeNi | PBF | 270 | [86] |
AlCoCrFeNi | PBF | 632.8 | [87] |
AlCoCrFeNi | PBF | 389–495 | [18] |
CrFeCoNiC0.05 | PBF | 340 | [88] |
CrMnFeCoNi | PBF | 254–268 | [89] |
CrMnFeCoNi | PBF | 200–300 | [90] |
CrMnFeCoNi | PBF | 212 | [91] |
CrMnFeCoNiTix | PBF | 460–900 | [37] |
AlCoCuFeNi | PBF | 541 | [42] |
WMoTaNb | PBF | 826 | [40] |
WMoTaNbV | PBF | 664 | [92] |
NbMoTaTi | PBF | 422 | [93] |
CrMnFeCoNi | PBF | 152.6–161.6 | [16] |
CrMnFeCoNi+WC | PBF | 310.6 | [62] |
NbTaTiMo | PBF | 452 | [94] |
FeCoCrNiMo0.5 | PBF | 840.89 | [14] |
FeCoCrNiMo0.5 | DED | 784.9 | [14] |
CrMnFeCoNi | DED | 195 | [17] |
CrMnFeCoNiTix | DED | 182–973 | [95] |
AlCoCrFeNi | DED | 543 | [96] |
AlCoCrFeNi | DED | 520–628 | [97] |
AlCoCrFeNi | DED | 538 | [98] |
Al0.3CoCrFeNi | DED | 205.3–212.3 | [99] |
AlCrFeMoVx | DED | 485–581 | [57] |
Ni2.1CoCrFe0.5Nb0.2 | DED | 260 | [100] |
AlMoNbTa | DED | 646 | [101] |
TiZrNbHfTa | DED | 509 | [9] |
AlCoCrFeNi | BJP | 530 | [12] |
Methods | HEAs | Power (W) | Speed (mm/s) | YS (MPa) | UTS (MPa) | EI% | Ref |
---|---|---|---|---|---|---|---|
PBF | FeCoCrNi + C | 250 300 350 400 400 400 | 800 800 800 800 1000 1200 | 630 635 630 638 643 656 | 776 788 786 797 789 783 | 9.6 11.3 11.9 13.5 11.5 7.7 | [71] |
PBF | FeCoCrNi + C | 400 | 800 | 638 | 795 | 13.5 | [44] |
PBF | FeCoCrNi | 200 | 300 | 600 | 745 | 32 | [83] |
PBF | FeCoCrNi | 150 | 270 | 572 | 691 | 17.9 | [15] |
PBF | CoCrFeMnNi | 90 | 600 | 774.9 | 923.3 | 30.8 | [106] |
PBF | CoCrFeMnNi | 280 | 800 | 620 | 730 | 12 | [107] |
PBF | CoCrFeMnNi | 400 | 800–4000 | 519 | 601 | 34 | [34] |
PBF | CoCrFeMnNi | 160–290 | 1500–2500 | 510 | 609 | 34 | [45] |
PBF | CoCrFeMnNi | 1000–1400 | 8.3 | 290 | 535 | 55 | [102] |
PBF | CoCrFeMnNi | 600–1000 | 13.3 | 346 | 566 | 27 | [54] |
PBF | CoCrFeMnNi + TiNp | 250 | 450 | / | 1100 | 8 | [64] |
PBF | CoCrFeMnNi + TiC | 200 | 200–1200 | / | 1036 | 12 | [20] |
PBF | CoCrFeMnNi + TiC | 375 | 1600 | / | 1059 1100 | 15.3 18 | [65] |
PBF | AlCoCuFeNi | 205 | 1000 | 1342 | 1471 | 0.9 | [42] |
PBF | Al0.5CoCrFeNi | 320 | 800 | 609 | 878 | / | [29] |
PBF | Al0.2Co1.5CrFeNi1.5Ti0.3 | / | / | 1235 1042 | 1550 1343 | 10.7 | [30] |
PBF | CoCrFeNiTi | 160 | 650 | 777.2 | 1178 | 26.4 | [108] |
PBF | FeCoCrNiSi0.05 | / | / | 715 | 932 | 31 | [109] |
PBF | Ni6Cr4WFe9Ti | 300 | 2500 | 742 | 972 | 12.2 | [110] |
DED | CoCrFeNiMn | 880 | 10 | 714 | 852 | 41.2 | [36] |
DED | CoCrFeNiMn | 300 | 600 | 448 | 620 | 57 | [111] |
DED | CoCrFeNiMn | 200 | / | 530 | 780 | 27 | [80] |
DED | CoCrFeNiMn | 400 | 5 | 517 | 650 | 26 | [55] |
DED | CoCrFeNiMn | 1400 | 500 | 290 | 535 | 55 | [102] |
DED | CoCrFeNiMn | / | / | 232 | 647 | 58 | [112] |
DED | Al0.3CoCrFeNi | 1000 | 1000 | 483.3 | 504.7 | 0.67 | [99] |
DED | AlCoCrFeNi2.1 | 800 | 10 | 768 | 1238 | 23 | [113] |
DED | CoCrFeNiMn + WC | 1000 | 500 | 675 | 845 | 9 | [61] |
Materials | Methods | Solution | Corrosion Current Density (A/cm2) | Corrosion Potential (V) | Ref |
---|---|---|---|---|---|
FeCoNiCrMn | PBF | 3.5 wt% NaCl | 9.333 × 10−2 | −1.186 | [119] |
FeCrCoNiMoB1.1Si1.2 | DED (1800 W) DED (2200 W) DED (2600 W) DED (3000 W) | 3.5 wt% NaCl | 7.24 × 10−6 3.39 × 10−6 2.40 × 10−6 4.16 × 10−6 | −0.4231 −0.3177 −0.2760 −0.3437 | [129] |
AlCoCrFeNi | PBF PBF (500 °C) PBF (800 °C) PBF (1000 °C) | 0.5 mol/LH2SO4 | 4.9924 × 10−8 3.9822 × 10−8 4.22382 × 10−8 4.2092 × 10−8 | −0.1812 −0.1899 −0.2382 −0.2060 | [130] |
CoCrFeNiMo0.2 | DED | 3.5 wt% NaCl | 1.84 × 10−9 | −0.192 | [131] |
CoCrFeNi | DED | 3.5 wt% NaCl | 3.17 × 10−7 | −0.265 | [131] |
CoCrFeNiMo0.2 | DED | 1 mol/L H2SO4 | 2.28 × 10−8 | −0.406 | [131] |
CoCrFeNi | DED | 1 mol/L H2SO4 | 4.87 × 10−5 | −0.724 | [131] |
FeAlNiCoTiZrV FeAlNiCoV0.9Sm0.1 FeAlNiCoTiZrV0.95Sm0.5 FeAlNiCoTiV0.9Sm0.1 | PBF | 3.5 wt% NaCl | −4.44 −5.08 −4.96 −5.171 | −0.755 −0.655 −0.666 −0.628 | [32] |
FeCrCuTiV | PBF | 3.5 wt% NaCl | 0.114 | −0.084 | [132] |
Hf0.5Nb0.5Ta0.5Ti1.5Zr | As-cast | 3.5 wt% NaCl | 0.34 | −0.73 | [133] |
AlCoCrFeNi | DED (800 °C) DED (1000 °C) DED (1200 °C) | 0.6 M NaCl | 0.117 0.129 0.089 | −0.2641 −0.2596 −0.2409 | [134] |
NbMoTaW | PBF | 3.5 wt% NaCl | 8.716 × 10−11 | −0.09157 | [40] |
CoCrFeMnNi | PBF | 3.5 wt% NaCl | 4.737 × 10−7 | −0.265 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.; Li, C.; Huang, J.; Wang, J.; Xue, L.; Wang, C.; Zhang, Y. Research Advances in Additively Manufactured High-Entropy Alloys: Microstructure, Mechanical Properties, and Corrosion Resistance. Metals 2025, 15, 136. https://doi.org/10.3390/met15020136
Han F, Li C, Huang J, Wang J, Xue L, Wang C, Zhang Y. Research Advances in Additively Manufactured High-Entropy Alloys: Microstructure, Mechanical Properties, and Corrosion Resistance. Metals. 2025; 15(2):136. https://doi.org/10.3390/met15020136
Chicago/Turabian StyleHan, Feng, Chunyang Li, Jiqiang Huang, Jiacai Wang, Long Xue, Caimei Wang, and Yu Zhang. 2025. "Research Advances in Additively Manufactured High-Entropy Alloys: Microstructure, Mechanical Properties, and Corrosion Resistance" Metals 15, no. 2: 136. https://doi.org/10.3390/met15020136
APA StyleHan, F., Li, C., Huang, J., Wang, J., Xue, L., Wang, C., & Zhang, Y. (2025). Research Advances in Additively Manufactured High-Entropy Alloys: Microstructure, Mechanical Properties, and Corrosion Resistance. Metals, 15(2), 136. https://doi.org/10.3390/met15020136