Cathodic Electrodeposition of Cerium-Based Conversion Coatings Using Deep Eutectic Solvents Formulations for Corrosion Protection of AA7075 Aluminum Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrochemical Studies
3.2. Characterization of the Electrodeposited Ce-Based Conversion Coatings
3.3. Corrosion Behavior of Ce-Based Conversion Coatings on AA 7075 Obtained from DES-Based Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Decision C(2020) 8797 Final of 18.12.2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.C_.2020.447.01.0005.01.ENG&toc=OJ%3AC%3A2020%3A447%3ATOC (accessed on 5 November 2024).
- Kendig, M.W.; Buchheit, R.G. Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 2003, 59, 379–400. [Google Scholar] [CrossRef]
- Pereira, A.M.; Pimenta, G.; Dunn, B.D. Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys—A Comparison of Alodine 1200 with Chromium-Free Conversion Coatings; ESA STM-276/2008; European Space Agency: ESA Communication Production Office ESTEC: Noordwijk, The Netherlands, 2008. [Google Scholar]
- Gharbi, O.; Thomas, S.; Smith, C.; Birbilis, N. Chromate replacement: What does the future hold? Npj Mater. Degrad. 2018, 2, 12. [Google Scholar] [CrossRef]
- Becker, M. Chromate-free chemical conversion coatings for aluminum alloys. Corros. Rev. 2019, 37, 321–342. [Google Scholar] [CrossRef]
- Carreira, A.F.; Pereira, A.M.; Vaz, E.P.; Cabral, A.M.; Ghidini, T.; Pigliaru, L.; Rohr, T. Alternative corrosion protection pretreatments for aluminum alloys. J. Coat. Technol. Res. 2017, 14, 879–892. [Google Scholar] [CrossRef]
- Mitton, D.B.; Carangelo, A.; Acquesta, A.; Monetta, T.; Curioni, M.; Bellucci, F. Selected Cr(VI) replacement options for aluminum alloys: A literature survey. Corros. Rev. 2017, 35, 365–381. [Google Scholar] [CrossRef]
- Hu, T.; Shi, H.; Hou, D.; Wei, T.; Fan, S.; Liu, F.; Han, E.H. A localized approach to study corrosion inhibition of intermetallic phases of AA 2024-T3 by cerium malate. Appl. Surf. Sci. 2019, 467–468, 1011–1032. [Google Scholar] [CrossRef]
- Valdez, B.; Kiyota, S.; Stoytcheva, M.; Zlatev, R.; Bastidas, J.M. Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6. Corros. Sci. 2014, 87, 141–149. [Google Scholar] [CrossRef]
- Harvey, G. Cerium-based conversion coatings on aluminium alloys: A process review. Corros. Eng. Sci. Technol. 2013, 48, 248–269. [Google Scholar] [CrossRef]
- Lopez-Garrity, O.; Frankel, G.S. Corrosion inhibition of aluminum alloy 2024-T3 by sodium molybdate. J. Electrochem. Soc. 2014, 161, C95–C106. [Google Scholar] [CrossRef]
- Kharitonov, D.S.; Sommertune, J.; Ornek, C.; Ryl, J.; Kurilo, I.I.; Claesson, P.M.; Pan, J. Corrosion inhibition of aluminium alloy AA6063-T5 by vanadates: Local surface chemical events elucidated by confocal Raman micro-spectroscopy. Corros. Sci. 2019, 148, 237–250. [Google Scholar] [CrossRef]
- Milošev, I.; Frankel, G.S. Review—Conversion coatings based on zirconium and/or titanium. J. Electrochem. Soc. 2018, 165, C127–C144. [Google Scholar] [CrossRef]
- Alba-Galvín, J.J.; González-Rovira, L.; Bethencourt, M.; Botana, F.J.; Sánchez-Amaya, J.M. Influence of Aerospace Standard Surface Pretreatment on the Intermetallic Phases and CeCC of 2024-T3 Al-Cu Alloy. Metals 2019, 9, 320. [Google Scholar] [CrossRef]
- Wu, L.-K.; Liu, L.; Li, J.; Hu, J.-M.; Zhang, J.-Q.; Cao, C.-N. Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection. Surf. Coat. Technol. 2010, 204, 3920–3926. [Google Scholar] [CrossRef]
- Brunelli, K.; Bisaglia, F.; Kovac, J.; Magrini, M.; Dabala, M. Effects of cathodic electrodeposition parameters of cerium oxide film on the corrosion resistance of the 2024 Al alloy. Mater.Corros. 2009, 60, 514–520. [Google Scholar] [CrossRef]
- Nikpayam, M.; Eivaz Mohammadloo, H.; Sadeghi Malekabadi, M.; Roshan, S.; Ghamsarizade, R.; Zargarian, S. The study on the corrosion resistance enhancement of cerium-based conversion coatings by adipic acid and phytic acid post-treatment. Colloids Surf. A 2024, 683, 133062. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, C.; Zhao, S.X.; Niu, A.Q.; Ma, Y.L.; Liu, B.C. Enhanced long-term corrosion protection of 2A14 aluminum alloy: Hybrid effect of micro-arc oxidation coating and cerium based conversion treatment. Surf. Coat. Technol. 2023, 464, 129579. [Google Scholar] [CrossRef]
- Gong, Y.; Geng, J.; Huang, J.; Chen, Z.; Wang, M.; Chen, D.; Wang, H. Self-healing performance and corrosion resistance of novel CeO2-sealed MAO film on aluminum alloy. Surf. Coat. Technol. 2021, 417, 127208. [Google Scholar] [CrossRef]
- Zhitomirsky, I.; Petric, A. Electrochemical deposition of ceria and doped ceria films. Ceram. Intern. 2001, 27, 149–155. [Google Scholar] [CrossRef]
- Rouabhia, F.; Hamlaoui, Y.; Meroufel, A.; Pedraza, F. Corrosion properties of ceria-based coating electrodeposited from alkaline bath on electrogalvanized steel. J. Appl. Electrochem. 2021, 51, 567–580. [Google Scholar] [CrossRef]
- Creus, J.; Brezault, F.; Rebere, C.; Gadouleau, M. Synthesis and characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate. Surf. Coat. Technol. 2006, 200, 4636–4645. [Google Scholar] [CrossRef]
- Hamlaoui, Y.; Rémazeilles, C.; Bordes, M.; Tifouti, L.; Pedraza, F. Electrodeposition of ceria-based layers on zinc electroplated steel. Corros. Sci. 2010, 52, 1020–1025. [Google Scholar] [CrossRef]
- Hamdi, S.; Guerfi, S.; Siab, R. Elaboration and characterization of thin solid films containing cerium. Phys. Procedia 2009, 2, 737–743. [Google Scholar] [CrossRef]
- Jena, G.; Chellappandian, R.; Neelakantan, L.; Adlakha, I. Development of potentiostatically deposited cerium conversion coating for Mg alloys. Mater. Corros. 2024, 75, 1313–1330. [Google Scholar] [CrossRef]
- Pereira, G.S.; Ramirez, O.M.P.; Avila, P.R.T.A.; Avila, J.A.; Pinto, H.C.; Miyazaki, M.H.; de Melo, H.G.; Filho, W.W.B. Cerium conversion coating and sol-gel coating for corrosion protection of the WE43 Mg alloy. Corros. Sci. 2022, 206, 110527. [Google Scholar] [CrossRef]
- Stoffer, J.O.; O’Keefe, T.J.; Lin, X.; Morris, E.; Yu, P.; Sitaram, S.P. Electrodeposition of Cerium-Based Coatings for Corrosion Protection of Aluminum Alloys. U.S. Patent No. 5,932,083, 3 August 1999. [Google Scholar]
- Zhao, D.; Sun, J.; Zhang, L.; Tan, Y.; Li, J. Corrosion behavior of rare earth cerium based conversion coating on aluminum alloy. J. Rare Earth 2010, 28, 371–374. [Google Scholar] [CrossRef]
- Živković, L.S.; Popić, J.P.; Jegdić, B.V.; Dohčević-Mitrović, Z.; Bajat, J.B.; Mišković-Stanković, V.B. Corrosion study of ceria coatings on AA6060 aluminumalloy obtained by cathodic electrodeposition: Effect of deposition potential. Surf. Coat. Technol. 2014, 240, 327–335. [Google Scholar] [CrossRef]
- Girginov, C.; Portolesi, S.; Kozhukharov, S.; Tsanev, A.; Lilov, E.; Petkov, P. Selection of appropriate electrochemical deposition regime for cerium conversion coating on anodized AA2024-T3 aircraft alloy. J. Appl. Electrochem. 2024, 54, 1171–1202. [Google Scholar] [CrossRef]
- Kozhukharov, S.; Girginov, C.; Portolesi, S.; Tsanev, A.; Lilova, V.; Petkov, P. Optimal current density for cathodic CeCC deposition on anodized AA2024-T3 aircraft alloy. J. Appl. Electrochem. 2024, 54, 2887–2918. [Google Scholar] [CrossRef]
- Endres, F.; Abbott, A.P.; MacFarlane, D.R. Electrodeposition from Ionic Liquids; Wiley-VCH Verlag: Weinheim, Germany, 2008. [Google Scholar]
- Protsenko, V.S.; Pavlenko, L.M.; Bobrova, L.S.; Korny, S.A.; Danilov, F.I. Electrodeposition of coatings from urea–choline chloride-based plating baths containing Ni(II) and Ce(III) chloride salts and electrocatalytic activity of electrodeposits towards the hydrogen evolution reaction. J. Solid State Electrochem. 2024, 28, 1641–1655. [Google Scholar] [CrossRef]
- Costovici, S.; Petica, A.; Dumitru, C.-S.; Cojocaru, A.; Anicai, L. Electrochemical synthesis on ZnO nanopowder involving choline chloride based ionic liquids. Chem. Eng. Trans. 2014, 41, 343–348. [Google Scholar]
- Anicai, L.; Petica, A.; Patroi, D.; Marinescu, V.; Prioteasa, P.; Costovici, S. Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids. Mater. Sci. Eng. B 2015, 199, 87–95. [Google Scholar] [CrossRef]
- Abo-Hamad, A.; Hayyan, M.; Al-Saadi, M.A.; Hashim, M.A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015, 273, 551–567. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kultin, D.; Kustov, L. Electrochemical Synthesis of Unique Nanomaterials in Ionic Liquids. Nanomaterials 2021, 11, 3270. [Google Scholar] [CrossRef] [PubMed]
- Lair, V.; Sirieix-Plenet, J.; Gaillon, L.; Rizzi, C.; Ringuedé, A. Mixtures of room temperature ionic liquid/ethanol solutions as electrolytic media for cerium oxide thin layer electrodeposition. Electrochim. Acta 2010, 56, 784–789. [Google Scholar] [CrossRef]
- Lisenkov, A.; Zheludkevich, M.L.; Ferreira, M.G.S. Active protective Al–Ce alloy coating electrodeposited from ionic liquid. Electrochem. Comm. 2010, 12, 729–732. [Google Scholar] [CrossRef]
- Molodkina, E.B.; Ehrenburg, M.R.; Rudnev, A.V. Electrochemical (co)reduction of Ce(III) and Fe(II) ions in a dicyanamide ionic liquid. Int. J. Corros. Scale Inhib. 2023, 12, 1733–1750. [Google Scholar] [CrossRef]
- Marín-Sánchez, M.; Gracia-Escosa, E.; Conde, A.; Palacio, C.; García, I. Deposition of Zinc–Cerium Coatings from Deep Eutectic Ionic Liquids. Materials 2018, 11, 2035. [Google Scholar] [CrossRef]
- Aldana-González, J.; de León, O.D.; Sánchez, W.; Sánchez-Vite, E.; Yemha, M.G.M.d.O.; Romero-Romo, M.A.; Arce-Estrada, E.; Palomar-Pardavé, M. Corrosion Protection of 6061 Aluminum Alloy By Cerium Electrodeposition Using a Deep Eutectic Solvent. Meet. Abstr. 2020, MA2020-01, 989. [Google Scholar] [CrossRef]
- MIL-DTL-81706B; Detail Specification. Chemical Conversion Materials for Coating Aluminum and Aluminum Alloys. Naval Air Warfare Center Aircraft Division: Patuxent River, MD, USA, 2004.
- IEC 60068-2-11:2021; Environmental Testing. Part 2-11: Tests—Test Ka: Salt Mist; iTeh Inc.: Newark, DE, USA, 2021.
- Scholes, F.H.; Soste, C.; Hughes, A.H.; Hardin, S.G.; Curtis, P.R. The role of hydrogen peroxide in the deposition of cerium-based conversion coatings. Appl. Surf. Sci. 2006, 253, 1770–1780. [Google Scholar] [CrossRef]
- Li, E.B.; Thompson, G.E. In situ atomic force microscopy studies of the deposition of cerium oxide films on regularly corrugated surfaces. J. Electrochem. Soc. 1999, 146, 1809–1815. [Google Scholar] [CrossRef]
- Selegard, L.; Poot, T.; Eriksson, P.; Palisaitis, J.; Persson, P.O.A.; Hu, Z.; Uvdal, K. In-situ growth of cerium nanoparticles for chrome-free, corrosion resistant anodic coatings. Surf. Coat. Technol. 2021, 410, 126958. [Google Scholar] [CrossRef]
- Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM); Version 1.0, Release 2007/8; ASM International: Materials Park, OH, USA, 2007. [Google Scholar]
- Abirami, S.; Bharathidasan, T.; Sathiyanarayanan, S.; Arunchandran, C. Cerium stearate electrodeposited superhydrophobic coatings for active corrosion protection of anodized AA2024-T3. Corrosion 2021, 77, 1080–1099. [Google Scholar] [CrossRef]
- Boisier, G.; Lamure, A.; Pébère, N.; Portail, N.; Villatte, M. Corrosion protection of AA2024 sealed anodic layers using the hydrophobic properties of carboxylic acids. Surf. Coat. Technol. 2009, 203, 3420–3426. [Google Scholar] [CrossRef]
Electrolyte Type | Electrolyte Composition |
---|---|
ILU-Ce | ILU:glycerol:ethanol (6:1:1 vol.) + 0.1 M Ce(NO3)3.6H2O + 0.5 M H2O2 |
ILG-Ce | ILG:ethanol (1:1 vol.) + 0.1 M Ce(NO3)3.6H2O + 0.5 M H2O2 |
Composition (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Other Elements | Al |
Max. 0.40 | Max. 0.50 | 1.2–2.0 | Max. 0.30 | 2.1–2.9 | 0.18–0.28 | 5.1–6.1 | Max. 0.2 | Max. 0.15 | rest |
Coating System | Initial | After Continuous Immersion for 720 h | ||
---|---|---|---|---|
Ecorr, V vs. Ag/AgCl | icorr, μA cm−2 | Ecorr, V vs. Ag/AgCl | icorr, μA cm−2 | |
AA 7075 untreated | −0.634 | 22.2 | −0.721 | 25.6 |
ILG-Ce | −0.610 | 4.12 | −0.606 | 7.17 |
ILU-Ce | −0.690 | 1.43 | −0.660 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petica, A.; Costovici, S.; Manea, A.-C.; Cojocaru, A.; Moise, C.C.; State, S.; Anicai, L.; Enachescu, M. Cathodic Electrodeposition of Cerium-Based Conversion Coatings Using Deep Eutectic Solvents Formulations for Corrosion Protection of AA7075 Aluminum Alloys. Metals 2025, 15, 20. https://doi.org/10.3390/met15010020
Petica A, Costovici S, Manea A-C, Cojocaru A, Moise CC, State S, Anicai L, Enachescu M. Cathodic Electrodeposition of Cerium-Based Conversion Coatings Using Deep Eutectic Solvents Formulations for Corrosion Protection of AA7075 Aluminum Alloys. Metals. 2025; 15(1):20. https://doi.org/10.3390/met15010020
Chicago/Turabian StylePetica, Aurora, Stefania Costovici, Adrian-Cristian Manea, Anca Cojocaru, Calin Constantin Moise, Sabrina State, Liana Anicai, and Marius Enachescu. 2025. "Cathodic Electrodeposition of Cerium-Based Conversion Coatings Using Deep Eutectic Solvents Formulations for Corrosion Protection of AA7075 Aluminum Alloys" Metals 15, no. 1: 20. https://doi.org/10.3390/met15010020
APA StylePetica, A., Costovici, S., Manea, A.-C., Cojocaru, A., Moise, C. C., State, S., Anicai, L., & Enachescu, M. (2025). Cathodic Electrodeposition of Cerium-Based Conversion Coatings Using Deep Eutectic Solvents Formulations for Corrosion Protection of AA7075 Aluminum Alloys. Metals, 15(1), 20. https://doi.org/10.3390/met15010020