Inhibited Surface Diffusion in Nanoporous Multi-Principal Element Alloy Thin Films Prepared by Vacuum Thermal Dealloying
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Parting Limit for Successful Dealloying and Formation of Nanoporous Structure
3.2. Ligament Size Measurement and Time-Dependence of Ligament Coarsening
3.3. Depth Profiling
4. Conclusions
- By leveraging its significantly higher vapor pressure, Mg was almost completely removed from the precursor thin film. The precursor film exhibited the HCP crystal structure with a strong 101 texture, whereas the dealloyed np-RMPEA transformed to the BCC crystal structure. VTD of Mg-based precursor thin films resulted in a nanoporous structure featuring fine (10–12 nm) ligaments and no cracks.
- np-VMoNbTa exhibits smaller ligaments than corresponding elemental refractory np-metals, which can be attributed to the slow diffusion kinetics of RMPEAs. Surface diffusion in this np-RMPEA proved to be slower than in Ta, which has the slowest diffusion rate among the constituent refractory elements present in the alloy. This slow diffusion phenomenon enables np-VMoNbTa to retain excellent structural stability and fine ligament size (25–30 nm width) during high-temperature annealing for extended times.
- np-VMoNbTa fabricated by vacuum thermal dealloying experienced an intermediate degree of oxidation, especially compared to the constituent refractory metals, i.e., it was not oxidized to the degree that refractory metals would experience during chemical dealloying. This was confirmed by XPS, where the results were consistent with the ligament cores in the np-structure being predominantly metallic and the ligament surfaces being oxidized.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pergher, S.B.C.; Rodríguez-Castellón, E. Nanoporous Materials and Their Applications. Appl. Sci. 2019, 9, 1314. [Google Scholar] [CrossRef]
- Gan, Y.X.; Zhang, Y.; Gan, J.B. Nanoporous Metals Processed by Dealloying and Their Applications. AIMS Mater. Sci. 2018, 5, 1141–1183. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Godbole, R.; Shin, H.-S. An Introduction to Nanoporous Materials. In Nanofluid Flow in Porous Media; 2019. Available online: https://api.semanticscholar.org/CorpusID:139317302 (accessed on 20 February 2024).
- Vizoso, D.; Kosmidou, M.; Balk, T.J.; Hattar, K.; Deo, C.; Dingreville, R. Size-Dependent Radiation Damage Mechanisms in Nanowires and Nanoporous Structures. Acta Mater. 2021, 215, 117018. [Google Scholar] [CrossRef]
- Xu, H.; He, L.-L.; Pei, Y.-F.; Jiang, C.-Z.; Li, W.-Q.; Xiao, X.-H. Recent Progress of Radiation Response in Nanostructured Tungsten for Nuclear Application. Tungsten 2021, 3, 20–37. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Xu, C.; Liang, Y.X.; Yan, Y.; Yang, K.J.; Liu, Z.L.; Wang, X.J.; Fu, E.G. The Radiation Effect of Ion Species on the Microstructure of Nanoporous Gold. Scr. Mater. 2021, 190, 136–140. [Google Scholar] [CrossRef]
- Lionello, D.F.; Ramallo, J.I.; Caro, M.; Wang, Y.Q.; Sheehan, C.; Baldwin, J.K.; Nogan, J.; Caro, A.; Fuertes, M.C.; Ruestes, C.J. Mechanical Properties of Al2O3-Functionalized Nanoporous Gold Foams under Irradiation. J. Mater. Res. 2021, 36, 2001–2009. [Google Scholar] [CrossRef]
- Rugolo, J.; Erlebacher, J.; Sieradzki, K. Length Scales in Alloy Dissolution and Measurement of Absolute Interfacial Free Energy. Nat. Mater. 2006, 5, 946–949. [Google Scholar] [CrossRef]
- Erlebacher, J.; Aziz, M.J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of Nanoporosity in Dealloying. Nature 2001, 410, 450–453. [Google Scholar] [CrossRef]
- Li, Z.; Lu, X. Nanoindentation for Mechanical Behaviour Characterization of Nanoporous Silver Fabricated through Dealloying. Bull. Mater. Sci. 2021, 44, 149. [Google Scholar] [CrossRef]
- Morrish, R.; Dorame, K.; Muscat, A.J. Formation of Nanoporous Au by Dealloying AuCu Thin Films in HNO3. Scr. Mater. 2011, 64, 856–859. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Ter-Isahakyan, A. Derivation, Exploration and Evaluation of Non-Equiatomic High Entropy Alloys. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2022. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, M.M.; Wang, J.; Gludovatz, B.; Zhang, Z.; Mao, S.X.; George, E.P.; Yu, Q.; Ritchie, R.O. Nanoscale Origins of the Damage Tolerance of the High-Entropy Alloy CrMnFeCoNi. Nat. Commun. 2015, 6, 10143. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Song, G.; Gao, M.C.; Feng, R.; Chen, P.; Brechtl, J.; Chen, Y.; An, K.; Guo, W.; Poplawsky, J.D.; et al. Lattice Distortion in a Strong and Ductile Refractory High-Entropy Alloy. Acta Mater. 2018, 160, 158–172. [Google Scholar] [CrossRef]
- Liu, D.; Yu, Q.; Kabra, S.; Jiang, M.; Forna-Kreutzer, P.; Zhang, R.; Payne, M.; Walsh, F.; Gludovatz, B.; Asta, M.; et al. Exceptional Fracture Toughness of CrCoNi-Based Medium- and High-Entropy Alloys at 20 Kelvin. Science 2022, 378, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.J.; Qu, R.T.; Zhang, Z.F. Remarkably High Fracture Toughness of HfNbTaTiZr Refractory High-Entropy Alloy. J. Mater. Sci. Technol. 2022, 123, 70–77. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.; Wu, S.; Liaw, P.K. Creep, Fatigue, and Fracture Behavior of High-Entropy Alloys. J. Mater. Res. 2018, 33, 3011–3034. [Google Scholar] [CrossRef]
- Sahragard-Monfared, G.; Zhang, M.; Smith, T.M.; Minor, A.M.; Gibeling, J.C. Superior Tensile Creep Behavior of a Novel Oxide Dispersion Strengthened CrCoNi Multi-Principal Element Alloy. Acta Mater. 2023, 255, 119032. [Google Scholar] [CrossRef]
- Sahragard-Monfared, G.; Zhang, M.; Smith, T.M.; Minor, A.M.; George, E.P.; Gibeling, J.C. The Influence of Processing Methods on Creep of Wrought and Additively Manufactured CrCoNi Multi-Principal Element Alloys. Acta Mater. 2023, 261, 119403. [Google Scholar] [CrossRef]
- Qiu, Y.; Thomas, S.; Gibson, M.A.; Fraser, H.L.; Birbilis, N. Corrosion of High Entropy Alloys. NPJ Mater. Degrad. 2017, 1, 15. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Luo, H.; Du, C.; Li, X. Recent Advances on Environmental Corrosion Behavior and Mechanism of High-Entropy Alloys. J. Mater. Sci. Technol. 2021, 80, 217–233. [Google Scholar] [CrossRef]
- Ouyang, G.; Singh, P.; Su, R.; Johnson, D.D.; Kramer, M.J.; Perepezko, J.H.; Senkov, O.N.; Miracle, D.; Cui, J. Design of Refractory Multi-Principal-Element Alloys for High-Temperature Applications. NPJ Comput. Mater. 2023, 9, 141. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, H.; Chang, X.; Zhang, L.; Wang, H.; Zhu, L.; Qin, S. Effect of Cu Content on the Microstructure and Corrosion Resistance of AlCrFeNi3Cux High Entropy Alloys. Corros. Sci. 2023, 221, 111313. [Google Scholar] [CrossRef]
- Xia, S.Q.; Yang, X.; Yang, T.F.; Liu, S.; Zhang, Y. Irradiation Resistance in AlxCoCrFeNi High Entropy Alloys. JOM 2015, 67, 2340–2344. [Google Scholar] [CrossRef]
- Deluigi, O.R.; Pasianot, R.C.; Valencia, F.J.; Caro, A.; Farkas, D.; Bringa, E.M. Simulations of Primary Damage in a High Entropy Alloy: Probing Enhanced Radiation Resistance. Acta Mater. 2021, 213, 116951. [Google Scholar] [CrossRef]
- Cheng, Z.; Sun, J.; Gao, X.; Wang, Y.; Cui, J.; Wang, T.; Chang, H. Irradiation Effects in High-Entropy Alloys and Their Applications. J. Alloys Compd. 2023, 930, 166768. Available online: https://www.sciencedirect.com/science/article/pii/S0925838822031590 (accessed on 20 February 2024). [CrossRef]
- Yu, Y.; Yu, Y. Simulations of Irradiation Resistance and Mechanical Properties under Irradiation of High-Entropy Alloy NiCoCrFe. Mater. Today Commun. 2022, 33, 104308. [Google Scholar] [CrossRef]
- Abid, T.; Akram, M.A.; Yaqub, T.B.; Ramzan Abdul Karim, M.; Fernandes, F.; Zafar, M.F.; Yaqoob, K. Design and Development of Porous CoCrFeNiMn High Entropy Alloy (Cantor Alloy) with Outstanding Electrochemical Properties. J. Alloys Compd. 2024, 970, 172633. [Google Scholar] [CrossRef]
- Yu, Z.-Y.; Sun, Q.; Li, H.; Qiao, Z.-J.; Li, W.-J.; Chou, S.-L.; Zhang, Z.-J.; Jiang, Y. Tuning Single-Phase Medium-Entropy Oxides Derived from Nanoporous NiCuCoMn Alloy as a Highly Stable Anode for Li-Ion Batteries. Rare Met. 2023, 42, 2982–2992. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Y.; Hu, Y.; Hu, K.; Lin, X.; Xie, G.; Liu, X.; Reddy, K.M.; Ito, Y.; Qiu, H.-J. Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis. ACS Mater. Lett. 2022, 4, 181–189. [Google Scholar] [CrossRef]
- Cai, Z.-X.; Goou, H.; Ito, Y.; Tokunaga, T.; Miyauchi, M.; Abe, H.; Fujita, T. Nanoporous Ultra-High-Entropy Alloys Containing Fourteen Elements for Water Splitting Electrocatalysis. Chem. Sci. 2021, 12, 11306–11315. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, Y.; Chen, Y.; Zhang, M.; Zhang, Z.; Kang, J.; Ma, X.; Jiang, Y.; Zhang, Y. Lithium Storage Characteristic of Nanoporous High-Entropy Alloy@high-Entropy Oxide with Spin-Dependent Synergism of Cations. Chem. Eng. J. 2023, 476, 146881. [Google Scholar] [CrossRef]
- Liu, H.; Qin, H.; Kang, J.; Ma, L.; Chen, G.; Huang, Q.; Zhang, Z.; Liu, E.; Lu, H.; Li, J.; et al. A Freestanding Nanoporous NiCoFeMoMn High-Entropy Alloy as an Efficient Electrocatalyst for Rapid Water Splitting. Chem. Eng. J. 2022, 435, 134898. [Google Scholar] [CrossRef]
- Qiu, H.-J.; Fang, G.; Wen, Y.; Liu, P.; Xie, G.; Liu, X.; Sun, S. Nanoporous High-Entropy Alloys for Highly Stable and Efficient Catalysts. J. Mater. Chem. A 2019, 7, 6499–6506. [Google Scholar] [CrossRef]
- Li, S.; Tang, X.; Jia, H.; Li, H.; Xie, G.; Liu, X.; Lin, X.; Qiu, H.-J. Nanoporous High-Entropy Alloys with Low Pt Loadings for High-Performance Electrochemical Oxygen Reduction. J. Catal. 2020, 383, 164–171. [Google Scholar] [CrossRef]
- Liu, L.-H.; Li, N.; Han, M.; Han, J.-R.; Liang, H.-Y. Scalable Synthesis of Nanoporous High Entropy Alloys for Electrocatalytic Oxygen Evolution. Rare Met. 2022, 41, 125–131. [Google Scholar] [CrossRef]
- Lin, X.; Hu, Y.; Hu, K.; Lin, X.; Xie, G.; Liu, X.; Reddy, K.M.; Qiu, H.-J. Inhibited Surface Diffusion of High-Entropy Nano-Alloys for the Preparation of 3D Nanoporous Graphene with High Amounts of Single Atom Dopants. ACS Mater. Lett. 2022, 4, 978–986. [Google Scholar] [CrossRef]
- Zhao, C.; Cai, W.; Sun, N.; Chen, S.; Jing, W.; Zhao, C. Facile Preparation of Porous High-Entropy Alloy FeCoNiCuMn and Its OER Performance. J. Phys. Chem. Solids 2024, 184, 111668. [Google Scholar] [CrossRef]
- Yao, R.-Q.; Zhou, Y.-T.; Shi, H.; Wan, W.-B.; Zhang, Q.-H.; Gu, L.; Zhu, Y.-F.; Wen, Z.; Lang, X.-Y.; Jiang, Q. Nanoporous Surface High-Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2009613. [Google Scholar] [CrossRef]
- Shi, H.; Sun, X.-Y.; Zeng, S.-P.; Liu, Y.; Han, G.-F.; Wang, T.-H.; Wen, Z.; Fang, Q.-R.; Lang, X.-Y.; Jiang, Q. Nanoporous Nonprecious High-Entropy Alloys as Multisite Electrocatalysts for Ampere-Level Current-Density Hydrogen Evolution. Small Struct. 2023, 4, 2300042. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, B.; He, M.; Zhai, Z.; Yin, K.; Kong, F.; Zhang, Z. Eutectic-Derived High-Entropy Nanoporous Nanowires for Efficient and Stable Water-to-Hydrogen Conversion. Nano Res. 2022, 15, 4820–4826. [Google Scholar] [CrossRef]
- Biener, J.; Hodge, A.M.; Hayes, J.R.; Volkert, C.A.; Zepeda-Ruiz, L.A.; Hamza, A.V.; Abraham, F.F. Size Effects on the Mechanical Behavior of Nanoporous Au. Nano Lett. 2006, 6, 2379–2382. [Google Scholar] [CrossRef]
- Fujita, T.; Tokunaga, T.; Zhang, L.; Li, D.; Chen, L.; Arai, S.; Yamamoto, Y.; Hirata, A.; Tanaka, N.; Ding, Y.; et al. Atomic Observation of Catalysis-Induced Nanopore Coarsening of Nanoporous Gold. Nano Lett. 2014, 14, 1172–1177. [Google Scholar] [CrossRef]
- Jeon, H.; Woo, J.-H.; Song, E.; Kim, J.-Y. Ligament Size Effect in Creep of Nanoporous Gold. Int. J. Plast. 2022, 150, 103192. [Google Scholar] [CrossRef]
- Saffarini, M.H.; Voyiadjis, G.Z.; Ruestes, C.J. Scaling Laws for Nanoporous Metals under Uniaxial Loading. J. Mater. Res. 2021, 36, 2729–2741. [Google Scholar] [CrossRef]
- Joo, S.-H.; Bae, J.W.; Park, W.-Y.; Shimada, Y.; Wada, T.; Kim, H.S.; Takeuchi, A.; Konno, T.J.; Kato, H.; Okulov, I.V. Nanoporous Materials: Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design. Adv. Mater. 2020, 32, 2070044. [Google Scholar] [CrossRef]
- Tsai, K.-Y.; Tsai, M.-H.; Yeh, J.-W. Sluggish Diffusion in Co–Cr–Fe–Mn–Ni High-Entropy Alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Joo, S.-H.; Kato, H.; Okulov, I.V. Evolution of 3D Interconnected Composites of High-Entropy TiVNbMoTa Alloys and Mg during Liquid Metal Dealloying. Compos. Part B Eng. 2021, 222, 109044. [Google Scholar] [CrossRef]
- Okulov, A.V.; Joo, S.-H.; Kim, H.S.; Kato, H.; Okulov, I.V. Nanoporous High-Entropy Alloy by Liquid Metal Dealloying. Metals 2020, 10, 1396. [Google Scholar] [CrossRef]
- El-Atwani, O.; Li, N.; Li, M.; Devaraj, A.; Baldwin, J.K.S.; Schneider, M.M.; Sobieraj, D.; Wróbel, J.S.; Nguyen-Manh, D.; Maloy, S.A.; et al. Outstanding Radiation Resistance of Tungsten-Based High-Entropy Alloys. Sci. Adv. 2019, 5, eaav2002. [Google Scholar] [CrossRef]
- Plasma-Wall Interaction with Irradiated Tungsten and Tungsten Alloys in Fusion Devices. Available online: https://www.iaea.org/projects/crp/f43021 (accessed on 20 April 2021).
- Basu, I.; De Hosson, J.T.M. High Entropy Alloys: Ready to Set Sail? Metals 2020, 10, 194. [Google Scholar] [CrossRef]
- Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catal. 2020, 10, 11280–11306. [Google Scholar] [CrossRef]
- Tomboc, G.M.; Kwon, T.; Joo, J.; Lee, K. High Entropy Alloy Electrocatalysts: A Critical Assessment of Fabrication and Performance. J. Mater. Chem. A 2020, 8, 14844–14862. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, F.; Wei, D.; Han, J.; Xia, Y.; Jiang, J.; Zhong, M.; Hirata, A.; Watanabe, K.; Karma, A.; et al. Vapor Phase Dealloying Kinetics of MnZn Alloys. Acta Mater. 2021, 212, 116916. [Google Scholar] [CrossRef]
- Kosmidou, M.; Detisch, M.J.; Maxwell, T.L.; Balk, T.J. Vacuum thermal dealloying of magnesium-based alloys for fabrication of nanoporous refractory metals. MRS Commun. 2019, 9, 144–149. [Google Scholar] [CrossRef]
- CRC Press. CRC Handbook of Chemistry and Physics a Ready-Reference Book of Chemical and Physical Data, 101st ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar]
- Rapson, W.S. Intermetallic Compounds of Gold. Gold Bull. 1996, 29, 141–142. [Google Scholar] [CrossRef]
- Artymowicz, D.M.; Erlebacher, J.; Newman, R.C. Relationship between the Parting Limit for De-Alloying and a Particular Geometric High-Density Site Percolation Threshold. Philos. Mag. 2009, 89, 1663–1693. [Google Scholar] [CrossRef]
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annu. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Newman, R.C. 2.05—Dealloying. In Shreir’s Corrosion; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H., Eds.; Elsevier: Oxford, UK, 2010; pp. 801–809. ISBN 978-0-444-52787-5. [Google Scholar]
- Seker, E.; Reed, M.L.; Begley, M.R. A Thermal Treatment Approach to Reduce Microscale Void Formation in Blanket Nanoporous Gold Films. Scr. Mater. 2009, 60, 435–438. [Google Scholar] [CrossRef]
- Ma, Y.; Zhan, Z.; Tao, L.; Xu, G.; Tang, A.; Ouyang, T. Construction of MnO2/Micro-Nano Ni-Filled Ni Foam for High-Performance Supercapacitors Application. Ionics 2020, 26, 4671–4684. [Google Scholar] [CrossRef]
- Cialone, M.; Celegato, F.; Scaglione, F.; Barrera, G.; Raj, D.; Coïsson, M.; Tiberto, P.; Rizzi, P. Nanoporous FePd Alloy as Multifunctional Ferromagnetic SERS-Active Substrate. Appl. Surf. Sci. 2021, 543, 148759. [Google Scholar] [CrossRef]
- Henkelmann, G.; Waldow, D.; Liu, M.; Lührs, L.; Li, Y.; Weissmüller, J. Self-Detachment and Subsurface Densification of Dealloyed Nanoporous Thin Films. Nano Lett. 2022, 22, 6787–6793. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Antoniou, A. A Relation between Relative Density, Alloy Composition and Sample Shrinkage for Nanoporous Metal Foams. Scr. Mater. 2012, 67, 923–926. [Google Scholar] [CrossRef]
- Dong, H.; Cao, X. Nanoporous Gold Thin Film: Fabrication, Structure Evolution, and Electrocatalytic Activity. J. Phys. Chem. C 2008, 113, 603–609. [Google Scholar] [CrossRef]
- Briot, N. Nanomechanical And Scaling Behavior of Nanoporous Gold. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2015. [Google Scholar]
- Miedema, A.R. Simple Model for Alloys. Philips Tech. Rev. 1973, 33, 149–160. [Google Scholar]
- Staišiūnas, L.; Leinartas, K.; Samulevičienė, M.; Miečinskas, P.; Grigucevičienė, A.; Juškėnas, R.; Juzeliūnas, E. Electrochemical and Structural Characterization of Sputter-Deposited Mg–Nb and Mg–Nb–Al–Zn Alloy Films. J. Solid State Electrochem. 2013, 17, 1649–1656. [Google Scholar] [CrossRef]
- Gordin, A.S.; Sandhage, K.H. In Situ High-Temperature X-Ray Diffraction Analysis of Mg2Si Formation Kinetics via Reaction of Mg Films with Si Single Crystal Substrates. Intermetallics 2018, 94, 200–209. [Google Scholar] [CrossRef]
- Cantor, B. Multicomponent and High Entropy Alloys. Entropy 2014, 16, 4749–4768. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural Development in Equiatomic Multicomponent Alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yao, H.; Qiao, J.-W.; Gao, M.C.; Hawk, J.A.; Ma, S.-G.; Zhou, H. MoNbTaV Medium-Entropy Alloy. Entropy 2016, 18, 189. [Google Scholar] [CrossRef]
- McCue, I.; Karma, A.; Erlebacher, J. Pattern Formation during Electrochemical and Liquid Metal Dealloying. MRS Bull. 2018, 43, 27–34. [Google Scholar] [CrossRef]
- Chen, Q.; Sieradzki, K. Mechanisms and Morphology Evolution in Dealloying. Electrochem. Soc. 2013, 160, C226–C231. [Google Scholar] [CrossRef]
- Divinski, S.V.; Pokoev, A.; Esakkiraja, N.; Paul, A. A Mystery of “Sluggish Diffusion” in High-Entropy Alloys: The Truth or a Myth? arXiv 2018, arXiv:1804.03465. [Google Scholar] [CrossRef]
- Kucza, W.; Dąbrowa, J.; Cieślak, G.; Berent, K.; Kulik, T.; Danielewski, M. Studies of “Sluggish Diffusion” Effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni High Entropy Alloys; Determination of Tracer Diffusivities by Combinatorial Approach. J. Alloys Compd. 2018, 731, 920–928. [Google Scholar] [CrossRef]
- Verma, V.; Tripathi, A.; Venkateswaran, T.; Kulkarni, K.N. First Report on Entire Sets of Experimentally Determined Interdiffusion Coefficients in Quaternary and Quinary High-Entropy Alloys. J. Mater. Res. 2020, 35, 162–171. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Zajusz, M.; Kucza, W.; Cieślak, G.; Berent, K.; Czeppe, T.; Kulik, T.; Danielewski, M. Demystifying the Sluggish Diffusion Effect in High Entropy Alloys. J. Alloys Compd. 2019, 783, 193–207. [Google Scholar] [CrossRef]
- Qian, L.H.; Chen, M.W. Ultrafine Nanoporous Gold by Low-Temperature Dealloying and Kinetics of Nanopore Formation. Appl. Phys. Lett. 2007, 91, 083105. [Google Scholar] [CrossRef]
- Lu, Z.; Li, C.; Han, J.; Zhang, F.; Liu, P.; Wang, H.; Wang, Z.; Cheng, C.; Chen, L.; Hirata, A.; et al. Three-Dimensional Bicontinuous Nanoporous Materials by Vapor Phase Dealloying. Nat. Commun. 2018, 9, 276. [Google Scholar] [CrossRef]
- Chen-Wiegart, Y.K.; Wang, S.; Chu, Y.S.; Liu, W.; McNulty, I.; Voorhees, P.W.; Dunand, D.C. Structural Evolution of Nanoporous Gold during Thermal Coarsening. Acta Mater. 2012, 60, 4972–4981. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, P.; Yan, J.; Li, N.; Shi, S.; Zhang, S. Temperature-Induced Surface Reconstruction and Interface Structure Evolution on Ligament of Nanoporous Copper. Sci. Rep. 2018, 8, 447. [Google Scholar] [CrossRef]
- Andreasen, G.; Nazzarro, M.; Ramirez, J.; Salvarezza, R.C.; Arvia, A.J. Kinetics of Particle Coarsening at Gold Electrode/Electrolyte Solution Interfaces Followed by In Situ Scanning Tunneling Microscopy. J. Electrochem. Soc. 1996, 143, 466–471. [Google Scholar] [CrossRef]
- Tyson, W.R.; Miller, W.A. Surface Free Energies of Solid Metals: Estimation from Liquid Surface Tension Measurements. Surf. Sci. 1977, 62, 267–276. [Google Scholar] [CrossRef]
- Allen, B.C. The Surface Self-Diffusion of Mo, Cb (Nb), and Re. Met. Mater Trans. B 1972, 3, 2544–2547. [Google Scholar] [CrossRef]
- Hok, S.; Drechsler, M. A Measurement of the Surface Self-Diffusion of Tantalum. Surf. Sci. Lett. 1981, 107, L362–L366. [Google Scholar] [CrossRef]
- Yu, J.M.; Trivedi, R. Surface Self-Diffusion Studies on the (111) Surface of Vanadium. Surf. Sci. 1983, 125, 396–408. [Google Scholar] [CrossRef]
- Detsi, E.; Jong, E.D.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; Brinke, G.; Raedt, H.A.D.; Onck, P.R.; et al. On the Specific Surface Area of Nanoporous Materials. Acta Mater. 2011, 59, 7488–7497. [Google Scholar] [CrossRef]
Element | Precursor Film Composition (at.%) | Dealloyed Film Composition (at.%) | Precursor Film Composition with Refractory Elements Only (at.%) | Dealloyed Film Composition with Refractory Elements Only (at.%) |
---|---|---|---|---|
Mg | 76.3 | 3.7 | – | – |
V | 5.8 | 22.2 | 24.6 | 23.2 |
Mo | 5.8 | 24.1 | 24.6 | 24.9 |
Nb | 6.2 | 25.9 | 26.3 | 26.9 |
Ta | 5.8 | 24.1 | 24.6 | 25 |
Time (h) | Average Ligament Width (nm) | Standard Deviation (nm) |
---|---|---|
1 | 15 | ±4 |
2 | 17 | ±4 |
3 | 19 | ±3 |
4 | 20 | ±5 |
5 | 21 | ±5 |
6 | 23 | ±4 |
8 | 23 | ±5 |
10 | 25 | ±5 |
20 | 25 | ±6 |
48 | 26 | ±5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das Gupta, T.; Balk, T.J. Inhibited Surface Diffusion in Nanoporous Multi-Principal Element Alloy Thin Films Prepared by Vacuum Thermal Dealloying. Metals 2024, 14, 289. https://doi.org/10.3390/met14030289
Das Gupta T, Balk TJ. Inhibited Surface Diffusion in Nanoporous Multi-Principal Element Alloy Thin Films Prepared by Vacuum Thermal Dealloying. Metals. 2024; 14(3):289. https://doi.org/10.3390/met14030289
Chicago/Turabian StyleDas Gupta, Tibra, and Thomas John Balk. 2024. "Inhibited Surface Diffusion in Nanoporous Multi-Principal Element Alloy Thin Films Prepared by Vacuum Thermal Dealloying" Metals 14, no. 3: 289. https://doi.org/10.3390/met14030289
APA StyleDas Gupta, T., & Balk, T. J. (2024). Inhibited Surface Diffusion in Nanoporous Multi-Principal Element Alloy Thin Films Prepared by Vacuum Thermal Dealloying. Metals, 14(3), 289. https://doi.org/10.3390/met14030289