Cold Rolling Technology Optimization for EN AW 4343/3003/4343 Cladded Aluminum Alloys and Influence of Parameters on Microstructure, Mechanical Properties and Sustainable Recyclability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Rolling Process
2.2. Characterization
3. Results and Discussion
3.1. Compression Tests
3.2. Numerical Simulation
3.3. Microstructural Characteristics
3.4. Mechanical Properties and Anisotropy
3.5. Corrosion Behavior
3.6. Recycling Possibility
4. Conclusions
- The rolling force from industrial measurements fits more with the numerically simulated predictions of cladded 3003 material, despite the measured surface temperature being more correlated with the uncladded 3003 material used in the numerical simulation. The most rational explanation of cold rolling parameters for material cladded on both sides was made as a combination of cladded and uncladded material predictions.
- The crystal grains in the cladded layers are significantly bigger than in the core, which gives the impression that the grains in the cladded layers were melted and retake the shape of dendrites. The border between the core and cladded layers is less significant after the braze test compared to the cold-rolled condition, since the grains (dendrites) according to Ostwald ripening interfered with the core layer.
- Corrosion potential, current density, re-passivation potential, and polarization resistance values are lower for heat-treated material at the same thickness compared to the cold-rolled state. In accordance, the corrosion velocity is also lower for material after the braze test (1.81 μm/year), whereas the same material before it in the cold-rolled condition reached 5.91 μm/year.
- The content of Mn is stable and unchanged after all three repetitions of remelting, unlike the Si content, which gradually decreases after the third remelting. According to the analyzed chemical compositions, the cladded material can be recycled and reused as different 4xxx, 5xxx, and 6xxx alloys.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rizvi, S.W.H.; Agrawal, S.; Murtaza, Q. Automotive Industry and Industry 4.0-Circular Economy Nexus through the Consumers’ and Manufacturers’ Perspectives: A Case Study. Renew. Sustain. Energy Rev. 2023, 183, 113517. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhang, Z.Y.; Jin, L.; Dong, J. Effects of Annealing Process on Sagging Resistance of Cold-Rolled Three-Layer Al Alloy Clad Sheets. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2016, 26, 2542–2551. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent Development in Aluminium Alloys for the Automotive Industry; Elsevier: Amsterdam, The Netherlands, 2000; Volume 280. [Google Scholar]
- Rezaii, A.; Shafiei, E.; Ostovan, F.; Daneshmanesh, H. Experimental & Theoretical Investigation of Roll Bonding Process of Multilayer Strips by Finite Element Method. J. Manuf. Process. 2020, 54, 54–69. [Google Scholar] [CrossRef]
- Khan, H.A.; Asim, K.; Akram, F.; Hameed, A.; Khan, A.; Mansoor, B. Roll Bonding Processes: State-of-the-Art and Future Perspectives. Metals 2021, 11, 1344. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A.V.; Mochugovskiy, A.G.; Kotov, A.D.; Yakovtseva, O.A.; Gorshenkov, M.V.; Portnoy, V.K. Superplasticity of Clad Aluminium Alloy. J. Mater. Process. Technol. 2017, 243, 355–364. [Google Scholar] [CrossRef]
- Shin, J.; Kim, K.; Ko, S. Effects of Ti Addition into Core Alloy on Forming and Brazing Characteristics of 4343/3003/4343 Aluminum Alloy Clad Sheets. Mater. Trans. 2013, 54, 2131–2138. [Google Scholar] [CrossRef]
- Kang, M.; Zhou, L.; Deng, Y.; Luo, Y.; He, M.; Zhang, N.; Huang, Z.; Dong, L. Microstructure and Mechanical Properties of 4343/3003/6111/3003 Four-Layer Al Clad Sheets Subjected to Different Conditions. Metals 2022, 12, 777. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, S.; Kim, M. Fabrication and Brazeability of a Three-Layer 4343/3003/4343 Aluminum Clad Sheet by Rolling. J. Mater. Process. Technol. 2001, 111, 85–89. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H.W.; Euh, K.; Kang, J.H.; Cho, J.H. Effect of Wire Brushing on Warm Roll Bonding of 6XXX/5XXX/6XXX Aluminum Alloy Clad Sheets. Mater. Des. 2012, 35, 290–295. [Google Scholar] [CrossRef]
- Zhang, X.P.; Yang, T.H.; Castagne, S.; Wang, J.T. Microstructure; Bonding Strength and Thickness Ratio of Al/Mg/Al Alloy Laminated Composites Prepared by Hot Rolling. Mater. Sci. Eng. A 2011, 528, 1954–1960. [Google Scholar] [CrossRef]
- Zhang, X.P.; Yang, T.H.; Castagne, S.; Gu, C.F.; Wang, J.T. Proposal of Bond Criterion for Hot Roll Bonding and Its Application. Mater. Des. 2011, 32, 2239–2245. [Google Scholar] [CrossRef]
- Movahedi, M.; Kokabi, A.H.; Madaah-Hosseini, H.R.; Kiani, M. Roll Bonding Behaviour of Al-3003/Al-4043 and Al-3003/Zn Sheets. Met. Mater. Int. 2011, 17, 665–670. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, J.H.; Euh, K.; Kim, H.W. Grain-Structure Evolution of Brazing-Treated A4343/A3003/A4343 Aluminum Brazing Sheets Rolled with Different Reductions. Met. Mater. Int. 2015, 21, 276–285. [Google Scholar] [CrossRef]
- Cha, J.H.; Kim, S.H.; Lee, Y.S.; Kim, H.W.; Choi, Y.S. Effect of Heat Treatment on Interfacial and Mechanical Properties of A6022/A7075/A6022 Roll-Bonded Multi-Layer Al Alloy Sheets. Met. Mater. Int. 2016, 22, 880–886. [Google Scholar] [CrossRef]
- Raabe, D.; Ponge, D.; Uggowitzer, P.J.; Roscher, M.; Paolantonio, M.; Liu, C.; Antrekowitsch, H.; Kozeschnik, E.; Seidmann, D.; Gault, B.; et al. Making Sustainable Aluminum by Recycling Scrap: The Science of “Dirty” Alloys. Prog. Mater. Sci. 2022, 128, 100947. [Google Scholar] [CrossRef]
- Pilipenets, O.; Gunawardena, T.; Kin Peng Hui, F.; Nguyen, K.; Mendis, P.; Aye, L. Upcycling Opportunities and Potential Markets for Aluminium Composite Panels with Polyethylene Core (ACP-PE) Cladding Materials in Australia: A Review. Constr. Build. Mater. 2022, 357, 129194. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Du, Y.; Liu, M.; Bai, R.; Si, Y.; Liu, B.; Jung, D.W.; Osaka, A. Constitutive Model Parameter Identification Based on Optimization Method and Formability Analysis for Ti6Al4V Alloy. Materials 2022, 15, 1748. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Rezaei, S.; Wang, T.; Han, J.; Shu, X.; Pater, Z.; Huang, Q. Recent Advances and Trends in Roll Bonding Process and Bonding Model: A Review. Chin. J. Aeronaut. 2023, 36, 36–74. [Google Scholar] [CrossRef]
- Prakash, A.; Nöhring, W.G.; Lebensohn, R.A.; Höppel, H.W.; Bitzek, E. A Multiscale Simulation Framework of the Accumulative Roll Bonding Process Accounting for Texture Evolution. Mater. Sci. Eng. A 2015, 631, 104–119. [Google Scholar] [CrossRef]
- Wang, H.; Su, L.; Yu, H.; Lu, C.; Kiet Tieu, A.; Liu, Y.; Zhang, J. A New Finite Element Model for Multi-Cycle Accumulative Roll-Bonding process and experiment verification. Mater. Sci. Eng. A 2018, 726, 93–101. [Google Scholar] [CrossRef]
- Kim, J.K.; Huh, M.Y.; Jee, K.K.; Engler, O. Texture Evolution during Roll-Cladding of a Composite of Five Plies of Ferritic Stainless Steel and Aluminum Sheets. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2005; Volume 495–497, pp. 1681–1686. [Google Scholar]
- Bernardi, C.; Hazotte, A.; Siredey-Schwaller, N.; Mazet, T.; Lacaze, J.; Mi, J.L. Microstructure Evolution in an Aluminum Cladded Sheet during Vacuum Brazing. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 790, pp. 355–360. [Google Scholar] [CrossRef]
- Shahani, A.J.; Xiao, X.; Skinner, K.; Peters, M.; Voorhees, P.W. Ostwald Ripening of Faceted Si Particles in an Al-Si-Cu Melt. Mater. Sci. Eng. A 2016, 673, 307–320. [Google Scholar] [CrossRef]
- Viceré, A.; Roventi, G.; Paoletti, C.; Cabibbo, M.; Bellezze, T. Corrosion Behavior of Aa6012 Aluminum Alloy Processed by Ecap and Cryogenic Treatment. Metals 2019, 9, 408. [Google Scholar] [CrossRef]
- Yao, E.; Zhang, H.; Ma, K.; Ai, C.; Gao, Q.; Lin, X. Effect of deep cryogenic treatment on microstructures and performances of aluminum alloys: A review. J. Mater. Res. Technol. 2023, 26, 3661–3675. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Rezar, R.; Jovičević-Klug, P.; Podgornik, B. Influence of Deep Cryogenic Treatment on Natural and Artificial Aging of Al-Mg-Si Alloy EN AW 6026. J. Alloys Compd. 2022, 899, 163323. [Google Scholar] [CrossRef]
- Abas, M.; Sayd, L.; Akhtar, R.; Khalid, Q.S.; Khan, A.M.; Pruncu, C.I. Optimization of machining parameters of aluminum alloy 6026-T9 under MQL-assisted turning process. J. Mater. Res. Technol. 2020, 5, 10916–10940. [Google Scholar] [CrossRef]
- Li, Y.; Hu, A.; Fu, Y.; Liu, S.; Shen, W.; Hu, H.; Nie, X. Al Alloys and Casting Processes for Induction Motor Applications in Battery-Powered Electric Vehicles: A Review. Metals 2022, 12, 216. [Google Scholar] [CrossRef]
- Jo, Y.H.; Moon, H.-R.; Bae, J.W.; Yoo, J.; Lee, S.G.; Lee, Y.-S.; Kim, H.-W. Effects of casting speed on microstructural and tensile properties of AleMgeSi alloy fabricated by horizontal and vertical twin-roll casting. J. Mater. Res. Technol. 2023, 26, 8010–8024. [Google Scholar] [CrossRef]
- Sezunenko, A.Y.; Petryshyn, M.M.; Kolesnichenko, A.A.; Lytvyn, R.V.; Lukianenko, I.V.; Byba, I.G.; Yamshinskij, M.M.; Barabash, M.Y. Features of structure and properties of Al–Si–Cu alloy produced by pressure casting. Results Mater. 2024, 21, 100539. [Google Scholar] [CrossRef]
Alloy | Mn | Si | Fe | Mg | Cu | Ti | Al |
---|---|---|---|---|---|---|---|
3003-CORE | 1.19 | 0.18 | 0.46 | 0.02 | 0.08 | 0.02 | Bal. |
4343-CLAD | 0.03 | 6.94 | 0.39 | 0.02 | 0.02 | 0.02 | Bal. |
A | m1 | m2 | m3 | m4 | |
---|---|---|---|---|---|
Uncladded 3003 | 213.092 | −0.00196 | 0.11707 | 0.02415 | −0.01439 |
Cladded 3003 | 233.234 | −0.00237 | 0.16832 | 0.01938 | −0.00213 |
Mechanical Properties | Anisotropy | |||
---|---|---|---|---|
UTS [MPa] | YS [MPa] | A [%] | Ear [%] | |
Cold-rolled | 215 | 199 | 2.4 | 5.4 |
Braze-tested | 146 | 57 | 18.1 | 2.0 |
Sample | Ecorr (mV) | Epit (mV) | Erep (mV) | Ecorr–Erep (mV) | icorr (μA/cm2) | Rp (Ω/cm2) | Vcorr (μm/Year) |
---|---|---|---|---|---|---|---|
Cold-rolled | −796 | −670 | −685 | 0.125 | 0.54 | 17.295 | 5.91 |
Braze test | −806 | −630 | −680 | 0.126 | 0.17 | 6.137 | 1.81 |
Sample | Mn | Si | Fe | Mg | Cu | Ti | Al |
---|---|---|---|---|---|---|---|
Re-melting 1 | 0.99 | 1.56 | 0.48 | 0.02 | 0.07 | 0.02 | Bal. |
Re-melting 2 | 0.99 | 1.56 | 0.46 | 0.01 | 0.07 | 0.02 | Bal. |
Re-melting 3 | 0.99 | 1.49 | 0.46 | 0.01 | 0.07 | 0.02 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kropf, B.; Cvahte, P.; Arzenšek, M.; Kraner, J. Cold Rolling Technology Optimization for EN AW 4343/3003/4343 Cladded Aluminum Alloys and Influence of Parameters on Microstructure, Mechanical Properties and Sustainable Recyclability. Metals 2024, 14, 230. https://doi.org/10.3390/met14020230
Kropf B, Cvahte P, Arzenšek M, Kraner J. Cold Rolling Technology Optimization for EN AW 4343/3003/4343 Cladded Aluminum Alloys and Influence of Parameters on Microstructure, Mechanical Properties and Sustainable Recyclability. Metals. 2024; 14(2):230. https://doi.org/10.3390/met14020230
Chicago/Turabian StyleKropf, Bojan, Peter Cvahte, Matija Arzenšek, and Jakob Kraner. 2024. "Cold Rolling Technology Optimization for EN AW 4343/3003/4343 Cladded Aluminum Alloys and Influence of Parameters on Microstructure, Mechanical Properties and Sustainable Recyclability" Metals 14, no. 2: 230. https://doi.org/10.3390/met14020230