High-Temperature Thermal Stability of Hot Isostatic Pressed Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) Eutectic High-Entropy Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The morphology, size, and distribution of the second phase of the eutectic high-entropy alloy were changed by hot isostatic pressing of pre-alloyed powders, and a uniformly distributed eutectic skeleton-type organization of the Laves phase and the FCC phase was obtained.
- (2)
- The eutectic high-entropy alloy demonstrated tensile mechanical properties reaching 412 MPa at 850 °C, showcasing its high-temperature strength.
- (3)
- Its excellent thermal stability can be seen from the mechanical property test and microstructure after annealing. Annealing causes the nano-Co3Ta phase to precipitate on the surface of the Laves phase, which enhances the performance of EHEA through pinning.
- (4)
- After annealing, the hardness first decreases and then tends to stabilize with the extension of the annealing time, indicating that it has stability at high temperatures of 1000 °C.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Li, W.; Xie, D.; Li, D.; Zhang, Y.; Gao, Y.; Liaw, P.K. Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 2021, 118, 100777. [Google Scholar] [CrossRef]
- Tsai, K.Y.; Tsai, M.H.; Yeh, J.W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, Y.; Jiang, H.; Wang, Z.; Cao, Z.; Guo, S.; Wang, T.; Li, T.; Liaw, P. Promising properties and future trend of eutectic high entropy alloys. Scr. Mater. 2020, 187, 202–209. [Google Scholar] [CrossRef]
- Chen, S.; Aitken, Z.H.; Pattamatta, S.; Wu, Z.; Yu, Z.; Srolovitz, D.J.; Liaw, P.K.; Zhang, Y.W. Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nat. Commun. 2021, 12, 4953. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Maresca, F.; Feng, R.; Chou, Y.; Ungar, T.; Widom, M.; An, K.; Poplawsky, J.D.; Chou, Y.C.; Liaw, P.K.; et al. Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nat. Commun. 2021, 12, 5474. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, Y.L.; Tong, Y.; Jiao, Z.B.; Wei, J.; Cai, J.X.; Han, X.D.; Chen, D.; Hu, A.; Kai, J.J.; et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 2018, 362, 933–937. [Google Scholar] [CrossRef]
- Pan, Q.; Zhang, L.; Feng, R.; Lu, Q.; An, K.; Chuang, A.C.; Poplawsky, J.D.; Liaw, P.K.; Lu, L. Gradient cell–structured high-entropy alloy with exceptional strength and ductility. Science 2021, 374, 984–989. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, Y.; Chen, X.; Fu, X.; Chen, D.; Chen, S.; Gu, L.; Wei, F.; Bei, H.; Gao, Y.; et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, X.; Jiang, L.; Chen, Z.; Wang, T.; Jie, J.; Kang, H.; Zhang, Y.; Guo, S.; Ruan, H. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017, 124, 143–150. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, X.; Fu, Z.; Yang, Q.; Zhang, Y.; Liu, Q.; Li, T.; Tian, Y.; Tan, H.; Li, Z.; et al. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3d printing. J. Mater. Sci. Technol. 2022, 126, 15–21. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, H.; Guo, S.; Wang, T.; Cao, Z.; Li, T. A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 2017, 91, 124–128. [Google Scholar] [CrossRef]
- Wang, M.; Lu, Y.; Lan, J.; Wang, T.; Zhang, C.; Cao, Z.; Li, T.; Liaw, P. Lightweight, ultrastrong and high thermal-stable eutectic high-entropy alloys for elevated-temperature applications. Acta Mater. 2023, 248, 118806. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, X.; Fan, X.; Li, R.; Tong, X.; Yu, P.; Li, G. Designing novel AlCoCrNi eutectic high entropy alloys. J. Alloys Compd. 2022, 904, 163775. [Google Scholar] [CrossRef]
- Ye, X.; Cheng, Z.; Liu, C.; Wu, X.; Yu, L.; Liu, M.; Fang, D.; Zhao, G.; Li, B. The microstructure and properties of Fe55Cr15Ni(30−x)Nbx eutectic high-entropy alloys. Mater. Sci. Eng. A 2022, 841, 143026. [Google Scholar] [CrossRef]
- Jiao, W.; Miao, J.; Lu, Y.; Chen, X.; Ren, Z.; Yin, G.; Li, T. Designing CoCrFeNi-M (M = Nb, Ta, Zr, and Hf) eutectic high-entropy alloys via a modified simple mixture method. J. Alloys Compd. 2023, 941, 168975. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Li, J.; Huang, Y.; Lu, Y.; Sun, X. Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2.1. Mater. Sci. Eng. A 2018, 724, 148–155. [Google Scholar] [CrossRef]
- Guénolé, J.; Mouhib, F.; Huber, L.; Grabowski, B.; Korte-Kerzel, S. Basal slip in Laves phases: The synchroshear dislocation. Scr. Mater. 2019, 166, 134–138. [Google Scholar] [CrossRef]
- Ding, Z.Y.; He, Q.F.; Wang, Q.; Yang, Y. Superb strength and high plasticity in laves phase rich eutectic medium-entropy-alloy nanocomposites. Int. J. Plast. 2018, 106, 57–72. [Google Scholar] [CrossRef]
- Jiang, H.; Qiao, D.; Lu, Y.; Ren, Z.; Cao, Z.; Wang, T.; Li, T. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability. Scr. Mater. 2019, 165, 145–149. [Google Scholar] [CrossRef]
- Ai, C.; He, F.; Guo, M.; Wang, Z.; Yuan, Z.; Guo, Y.; Liu, Y.; Liu, L. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. J. Alloys Compd. 2018, 735, 2653–2662. [Google Scholar] [CrossRef]
- Huo, W.; Zhou, H.; Fang, F.; Zhou, X.; Xie, Z.; Jiang, J. Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys. J. Alloys Compd. 2018, 735, 897–904. [Google Scholar] [CrossRef]
- Jiang, H.; Han, K.; Qiao, D.; Lu, Y.; Cao, Z.; Li, T. Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater. Chem. Phys. 2018, 210, 43–48. [Google Scholar] [CrossRef]
- Han, L.; Xu, X.; Wang, L.; Pyczak, F.; Zhou, R.; Liu, Y. A eutectic high-entropy alloy with good high-temperature strength-plasticity balance. Mater. Res. Lett. 2019, 7, 460–466. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Cheng, P.; Wang, Q.; Li, J.; Dang, Y.; Wang, J.; Liu, C. Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd. 2016, 656, 284–289. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.; Su, H.; Deng, B.; Liu, G.; Han, Z.; Su, Y.; Huang, Y.; Zhang, Y.; Shen, J.; et al. Microstructure and mechanical property of novel L12 nanoparticles-strengthened CoFeNi-based medium entropy alloys. Mater. Sci. Eng. A 2022, 840, 142917. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yang, T.; Tong, Y.; Wang, J.; Luan, J.; Jiao, Z.; Chen, D.; Yang, Y.; Hu, A.; Liu, C.; et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater. 2017, 138, 72–82. [Google Scholar] [CrossRef]
- Du, C.; Hu, L.; Pan, Q.; Chen, K.; Zhou, P.; Wang, G. Effect of Cu on the strengthening and embrittling of an FeCoNiCr-xCu HEA. Mater. Sci. Eng. A 2022, 832, 142413. [Google Scholar] [CrossRef]
- Sui, S.; Tan, H.; Chen, J.; Zhong, C.; Li, Z.; Fan, W.; Gasser, A.; Huang, W. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 2019, 164, 413–427. [Google Scholar] [CrossRef]
- Jiang, H.; Han, K.; Gao, X.; Lu, Y.; Cao, Z.; Gao, M.; Hawk, J.; Li, T. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater. Des. 2018, 142, 101–105. [Google Scholar] [CrossRef]
- Daoud, H.M.; Manzoni, A.M.; Wanderka, N.; Glatzel, U. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy). JOM 2015, 67, 2271–2277. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, R.; Qin, G.; Li, X.; Su, Y.Q.; Ding, H.; Guo, J.; Fu, H. Phase separation of AlCoCrFeNi2.1 eutectic high-entropy alloy during directional solidification and their effect on tensile properties. Intermetallics 2019, 113, 106569. [Google Scholar] [CrossRef]
- Wang, L.; Yao, C.; Shen, J.; Zhang, Y.; Wang, T.; Ge, Y.; Gao, L.; Zhang, G. Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. Intermetallics 2020, 118, 106681. [Google Scholar] [CrossRef]
- Reddy, S.R.; Yoshida, S.; Bhattacharjee, T.; Sake, N.; Lozinko, A.; Guo, S.; Bhattacharjee, P.P.; Tsuji, N. Nanostructuring with Structural-Compositional Dual Heterogeneities Enhances Strength-Ductility Synergy in Eutectic High Entropy Alloy. Sci. Rep. 2019, 9, 11505. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, S.; Xiong, Z.; Liang, Y.; Xue, Y.; Wang, L. Enabling stronger eutectic high-entropy alloys with larger ductility by 3D printed directional lamellae. Addit. Manuf. 2021, 39, 101901. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Zhao, D.; Chen, Y.; Guan, S.; Liu, Y.; Liu, L.; Peng, S.; Kong, F.; Poplawsky, J.; et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 2022, 608, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Garlapati, M.M.; Vaidya, M.; Karati, A.; Mishra, S.; Bhattacharya, R.; Murty, B.S. Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures. Adv. Powder Technol. 2020, 31, 1985–1993. [Google Scholar] [CrossRef]
- Liu, B.; Wang, J.; Liu, Y.; Fang, Q.; Wu, Y.; Chen, S.; Liu, C. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder extrusion. Intermetallics 2016, 75, 25–30. [Google Scholar] [CrossRef]
- Wang, M.; Lu, Y.; Wang, T.; Zhang, C.; Cao, Z.; Li, T.; Liaw, P. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures. Scr. Mater. 2021, 204, 114132. [Google Scholar] [CrossRef]
- Lin, X.; Wang, M.; Ren, G.; Qiao, D.; Lu, Y.; Wang, T.; Li, T. Microstructure evolution and mechanical properties of CrFeNixV0.64Ta0.36 eutectic high-entropy alloys. Mater. Charact. 2021, 181, 111449. [Google Scholar] [CrossRef]
- He, X.; Kong, L.; Liu, B. Stability of the Metastable Phases in the Co-Ta System Studied by ab initio and Thermodynamic Calculations Together with Ion-Beam-Mixing Experiment. J. Phys. Soc. Jpn. 2005, 74, 2501–2505. [Google Scholar] [CrossRef]
- Zhou, P.F.; Xiao, D.H.; Yuan, T.C. Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering. Acta Metall. Sin. 2020, 33, 937–946. [Google Scholar] [CrossRef]
EHEAs | Phase1 | Phase2 | Ref. |
---|---|---|---|
AlCoCrFeNi2.1 | (Fe,Co,Co)-rich | (Al,Ni)-rich | [12] |
CoCrFeNiTa0.4 | (Co,Cr,Fe,Ni)-rich | (Ta,Co)-rich | [13] |
AlCr1.3TiNi2 | (Ni,Ti,Al)-rich | (Cr,Ni)-rich | [40] |
CrFeNi1.85V0.64Ta0.36 | (Cr,Ni,V)-rich | (Fe,Ta)-rich | [41] |
Al | Cr | Fe | Co | Ni | Ta | |
---|---|---|---|---|---|---|
Measured | 2.56 ± 0.2 | 18.94 ± 0.1 | 23.10 ± 0.3 | 24.59 ± 0.2 | 19.41 ± 0.3 | 11.40 ± 0.4 |
Designed | 1.70 | 18.80 | 23.30 | 25.10 | 22.60 | 8.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Wu, C.; Xie, L.; Zhang, Y.; Wang, W. High-Temperature Thermal Stability of Hot Isostatic Pressed Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) Eutectic High-Entropy Alloy. Metals 2024, 14, 204. https://doi.org/10.3390/met14020204
Li D, Wu C, Xie L, Zhang Y, Wang W. High-Temperature Thermal Stability of Hot Isostatic Pressed Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) Eutectic High-Entropy Alloy. Metals. 2024; 14(2):204. https://doi.org/10.3390/met14020204
Chicago/Turabian StyleLi, Dongyue, Chengshuang Wu, Lu Xie, Yong Zhang, and Wenrui Wang. 2024. "High-Temperature Thermal Stability of Hot Isostatic Pressed Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) Eutectic High-Entropy Alloy" Metals 14, no. 2: 204. https://doi.org/10.3390/met14020204
APA StyleLi, D., Wu, C., Xie, L., Zhang, Y., & Wang, W. (2024). High-Temperature Thermal Stability of Hot Isostatic Pressed Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at%) Eutectic High-Entropy Alloy. Metals, 14(2), 204. https://doi.org/10.3390/met14020204