Static Behavior and Elastoplastic Ultimate Bearing Capacity Calculation Method of a Single-Layer Steel Reticulated Shell After Corrosion
Abstract
:1. Introduction
2. Steel Corrosion Test
2.1. Experimental Design
2.2. Results and Discussions
3. Programmed Modeling Method for Corroded Single-Layer Steel Reticulated Shells
3.1. Construction Process of the Overall Model of Single-Layer Steel Reticulated Shells
3.2. Simplified Simulation Method for Single-Layer Steel Reticulated Shell After Corrosion
4. Static Behavior After the Corrosion of Single-Layer Steel Reticulated Shells Under Constant Static Load Conditions
4.1. Displacement Response
4.2. Stress Response
4.3. Support Reaction Response
5. Calculation Method of the Elastic–Plastic Ultimate Bearing Capacity of Single-Layer Steel Reticulated Shells After Corrosion
5.1. Analysis of Factors Influencing the Elastic–Plastic Ultimate Bearing Capacity
- (1)
- Influence of Corrosion Degree
- (2)
- Influence of Corrosion Location
- (3)
- Influence of Random Corrosion
- (4)
- Influence of Joint Stiffness
5.2. Calculation Method of Elastic–Plastic Ultimate Bearing Capacity
6. Conclusions
7. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Q.; Wu, Z.; Xing, Y.; Lu, Y.; Zhang, F.; Li, W. Corrosion evolution and mechanical property deterioration of Q355NH weathering steel in long-term neutral salt spray environment. Constr. Build. Mater. 2024, 411, 134193. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Yuan, H.; Ai, D.; Xu, C. A Spiral Single-Layer Reticulated Shell Structure: Imperfection and Damage Tolerance Analysis and Stability Capacity Formulation for Conceptual Design. Buildings 2021, 11, 280. [Google Scholar] [CrossRef]
- Seghier, M.; Plevris, V.; Solorzano, G. Random forest-based algorithms for accurate evaluation of ultimate bending capacity of steel tubes. Structures 2022, 44, 261–273. [Google Scholar] [CrossRef]
- Huang, H.; Jia, C.; Zhao, O.; Guo, L. Local corrosion morphology analysis and simplification of low carbon steel plates. Ocean. Eng. 2023, 268, 113372. [Google Scholar] [CrossRef]
- Luo, X.; Lou, J.; He, H.; Wu, C.; Huang, Y.; Su, N.; Li, S. Effects of Carbon Content on the Properties of Novel Nitrogen-Free Austenitic Stainless Steel with High Hardness Prepared via Metal Injection Molding. Metals 2023, 13, 403. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, H.; Wang, P. Corrosion fatigue behavior and life prediction of butt-welded joint considering loading frequency. J. Constr. Steel Res. 2024, 219, 108744. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Huo, H.; Wang, Y.; Fang, C. Influence of corrosion on ultra-low cycle fatigue performance of steel butt-welded joints with various welding methods. J. Constr. Steel Res. 2024, 215, 108561. [Google Scholar] [CrossRef]
- Chai, Y.; Peng, J.; Xiao, L.; Liu, X.; Zhang, J. Fatigue Behavior of High-Performance Steel Beams Subjected to Different Corrosion Conditions. Int. J. Steel Struct. 2023, 23, 1105–1118. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, Z.; Xu, S. Hysteresis performance of steel beam-column welded T-joints corroded in steel industrial atmosphere. Eng. Fail. Anal. 2024, 159, 108118. [Google Scholar] [CrossRef]
- Gou, B.; Wang, X.L.; Wu, C.L. Experimental and numerical study on the behavior of single-layer spherical reticulated shells under the combined action of temperature and impact load. Thin-Walled Struct. 2023, 182, 110333. [Google Scholar] [CrossRef]
- Ge, H.B.; Wan, H.P.; Zheng, Y.; Luo, Y. Experimental and numerical study on stability behavior of reticulated shell composed of plate members. J. Constr. Steel Res. 2020, 171, 106102. [Google Scholar] [CrossRef]
- Mashrah, W.; Rima, B.; Liu, H.; Chen, Z.; Fu, B. Static stability analysis of steel single-layer spherical latticed shells with and without roofing systems. J. Build. Eng. 2023, 77, 107141. [Google Scholar] [CrossRef]
- Zuo, W.; Chen, M.-T.; Chen, Y.; Zhao, O.; Cheng, B.; Zhao, J. Additive manufacturing oriented parametric topology optimization design and numerical analysis of steel joints in grid shell structures. Thin-Walled Struct. 2023, 188, 110817. [Google Scholar] [CrossRef]
- Malek, S.; Wierzbicki, T.; Ochsendorf, J. Buckling of spherical cap grid shells: A numerical and analytical study revisiting the concept of the equivalent continuum. Eng. Struct. 2014, 75, 288–298. [Google Scholar] [CrossRef]
- Ma, H.; Fan, F.; Wen, P.; Zhang, H.; Shen, S. Experimental and numerical studies on a single-layer cylindrical reticulated shell with semi-rigid joints. Thin-Walled Struct. 2015, 86, 1–9. [Google Scholar] [CrossRef]
- Ma, H.; Shan, Z.; Fan, F. Dynamic behaviour and seismic design method of a single-layer reticulated shell with semi-rigid joints. Thin-Walled Struct. 2017, 119, 544–557. [Google Scholar] [CrossRef]
- Ge, H.-B.; Wan, H.-P.; Luo, Y. Numerical investigation on stability of reticulated shell structures composed of built-up plate members. Thin-Walled Struct. 2023, 192, 111121. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Z.; Gao, W.; Demartino, C.; Li, Y. Curve veering in spherical reticulated shells: Numerical simulations and mechanism analysis. Thin-Walled Struct. 2023, 191, 111026. [Google Scholar] [CrossRef]
- Li, P.; Chen, G.; Lu, H.; Ke, L.; Wang, H.; Jian, B. Dynamic Responses of Single-Layer Reticulated Shells under Oblique Impact Loading. Buildings 2024, 14, 633. [Google Scholar] [CrossRef]
- GB/T 10125-2012; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. Standards Press of China: Beijing, China, 2012.
- Jiang, C.; Wu, C.; Jiang, X. Experimental study on fatigue performance of corroded high-strength steel wires used in bridges. Constr. Build. Mater. 2018, 187, 681–690. [Google Scholar] [CrossRef]
- GB/T 19292.4-2003; Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity. Standards Press of China: Beijing, China, 2003.
- Yu, J.; Wang, H.; Yu, Y.; Luo, Z.; Liu, W.; Wang, C. Corrosion behavior of X65 pipeline steel: Comparison of wet–Dry cycle and full immersion. Corros. Sci. 2018, 133, 276–287. [Google Scholar] [CrossRef]
- GB/T 14293-1998; Corrosion Tests in Artificial Atmospheres—General Requirement. Standards Press of China: Beijing, China, 1998.
- ISO 8407; Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. ISO: Geneva, Switzerland, 2009.
- ISO 9224; Corrosion of Metals and Alloys—Corrosivity of Atmospheres—Guiding Values for the Corrosivity Categories. ISO: Geneva, Switzerland, 2012.
- Liang, C.; Hou, W. Sixteen-year atmospheric corrosion exposure study of steels. J. Chin. Soc. Corros. Prot. 2005, 25, 1–6. (In Chinese) [Google Scholar]
- Liang, J. Experimental Study on Fatigue Behavior of Corroded Weathering Steel Without Coating. Master’s Thesis, Zhejiang University, Hangzhou, China, 2017. (In Chinese). [Google Scholar]
- Chen, H.; Liu, H.; Chen, Z.; Xiong, Y. Experimental investigation of ultimate bearing capacity of corroded welded hollow spherical joints. Structures 2023, 57, 105127. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chen, Z. Residual behaviour of corroded welded hollow spherical joints subjected to eccentric loads. J. Constr. Steel Res. 2021, 182, 106661. [Google Scholar] [CrossRef]
- Zhang, Z. Mechanical Properties and Bearing Capacity Evaluation Method of Corroded Circular Steel Tubes Under Axial Compression. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2021. (In Chinese). [Google Scholar]
- Lu, J. Study on the Post-Fire Performance of Space Lattice Structures with Welded Hollow Spherical Joints. Ph.D. Thesis, Tianjin University, Tianjin, China, 2019. (In Chinese). [Google Scholar]
- JGJ 7-2010; Technical Specification for Space Frame Structures. China Architecture Publishing & Media Co., Ltd.: Beijing, China, 2010. (In Chinese)
- Cao, Z. Elasto-Plastic Stability of Reticulated Shells; Harbin Institute of Technology: Harbin, China, 2007. (In Chinese) [Google Scholar]
- JG11-2009; Welded Hollow Spherical Node of Space Grid Structures. Standards Press of China: Beijing, China, 2009. (In Chinese)
- Simoncelli, M.; Angelo Aloisio, A.; Zucca, M.; Venturi, G.; Alaggio, R. Intensity and location of corrosion on the reliability of a steel bridge. J. Constr. Steel Res. 2023, 206, 107937. [Google Scholar] [CrossRef]
Corrosion Degree Parameter | 4 (d) | 6 (d) | 7 (d) | 10 (d) | 20 (d) |
---|---|---|---|---|---|
(%) | 0.96 | 1.37 | 1.65 | 2.42 | 4.52 |
(mm) | 0.0159 | 0.0245 | 0.0279 | 0.0410 | 0.0763 |
Corrosion Degree Parameter | 100 (d) | 131 (d) | 157 (d) | 283 (d) | 320 (d) |
---|---|---|---|---|---|
(%) | 7.58 | 8.74 | 10.02 | 15.66 | 18.77 |
(mm) | 0.221 | 0.248 | 0.295 | 0.480 | 0.555 |
Corrosion period (d) | 100 | 131 | 157 | 283 | 320 |
Service environment in Qionghai (y) | 14 | 18 | 21 | 36 | 40 |
Site | Difference Series | Two-Level Minimum Difference | Two-Level Maximum Difference | Relevancy |
---|---|---|---|---|
Qionghai | (0, 0.01, 0.04, 0.04, 0.62) | 0 | 0.62 | 0.813 |
Span (m) | Number of Ring Rod Circles | Section Number | Joint Number | Main Rib/Ring Rod | Diagonal Member Section | ||
---|---|---|---|---|---|---|---|
Long Rod | “Equivalent Short Rod” | Long Rod | “Equivalent Short Rod” | ||||
40 | 6 | ① | WS3008 | Φ121 × 3.5 | Φ133.21 × 2.88 | Φ114 × 3 | Φ125.67 × 2.88 |
② | WS3510 | Φ133 × 4 | Φ148.05 × 3.63 | Φ127 × 3 | Φ141.53 × 3.63 | ||
③ | WS3510 | Φ140 × 4 | Φ155.66 × 3.63 | Φ133 × 4 | Φ148.05 × 3.63 | ||
④ | WS4012 | Φ146 × 5 | Φ163.9 × 4.39 | Φ140 × 6 | Φ157.34 × 4.4 | ||
50 | 7 | ⑤ | WS3510 | Φ140 × 4 | Φ155.66 × 3.63 | Φ127 × 3.5 | Φ141.53 × 3.63 |
60 | 8 | ⑥ | WS4012 | Φ146 × 5.5 | Φ163.9 × 4.39 | Φ133 × 4 | Φ149.69 × 4.4 |
70 | 9 | ⑦ | WS4514 | Φ152 × 6 | Φ172.01 × 5.16 | Φ146 × 5 | Φ165.41 × 5.16 |
Parameter | Value | Default |
---|---|---|
Corrosion degree | 0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 mm | - |
Corrosion location | Overall corrosion of joint area/only hollow sphere corrosion/only steel tube corrosion/uniform corrosion of the entire component | Uniform corrosion of the entire component |
Corrosion symmetry | Random corrosion of the entire component/uniform corrosion of the entire component | Uniform corrosion of the entire component |
Section size | Sections ①②③④ in Table 5 | Section ① |
Structure span | 40, 50, 60, and 70 m | 40 m |
Rise–span ratio | 1/5, 1/6, 1/7, and 1/8 | 1/5 |
Joint stiffness | Considering/without considering joint stiffness | Considering joint stiffness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhang, H.; Qiu, F. Static Behavior and Elastoplastic Ultimate Bearing Capacity Calculation Method of a Single-Layer Steel Reticulated Shell After Corrosion. Metals 2024, 14, 1328. https://doi.org/10.3390/met14121328
Chen H, Zhang H, Qiu F. Static Behavior and Elastoplastic Ultimate Bearing Capacity Calculation Method of a Single-Layer Steel Reticulated Shell After Corrosion. Metals. 2024; 14(12):1328. https://doi.org/10.3390/met14121328
Chicago/Turabian StyleChen, Huiyun, Haoran Zhang, and Feng Qiu. 2024. "Static Behavior and Elastoplastic Ultimate Bearing Capacity Calculation Method of a Single-Layer Steel Reticulated Shell After Corrosion" Metals 14, no. 12: 1328. https://doi.org/10.3390/met14121328
APA StyleChen, H., Zhang, H., & Qiu, F. (2024). Static Behavior and Elastoplastic Ultimate Bearing Capacity Calculation Method of a Single-Layer Steel Reticulated Shell After Corrosion. Metals, 14(12), 1328. https://doi.org/10.3390/met14121328