Rare Earth Carbide (Nd-C and Ce-C) Synthesis and Characterization to Inform Phase Equilibrium in Advanced Nuclear Fuels
Abstract
1. Introduction
2. Materials and Methods
2.1. Composition Selection
2.2. Arc Melt Fabrication
2.3. Characterization Methods
2.3.1. Scanning Electron Microscopy
2.3.2. X-Ray Diffraction
3. Results
3.1. Nd-C Characterization
3.2. Ce-C Characterization
4. Discussion
4.1. X-Ray Diffraction of the RE-C Alloys
4.2. Oxidation Behavior
4.3. Impact on Advanced Nuclear Fuels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watkins, J.K.; Wagner, A.R.; Gonzales, A.; Jaques, B.J.; Sooby, E.S. Challenges and opportunities to alloyed and composite fuel architectures to mitigate high uranium density fuel oxidation: Uranium diboride and uranium carbide. J. Nucl. Mater. 2022, 560, 153502. [Google Scholar] [CrossRef]
- Vasudevamurthy, G.; Nelson, A.T. Uranium carbide properties for advanced fuel modeling—A review. J. Nucl. Mater. 2022, 558, 153145. [Google Scholar] [CrossRef]
- Greenough, M.M.; Griffiths, R.J.; Ferrier, M.G.; Childs, B.C.; Silva, C.M.; Di Pietro, S.A.; Swift, A.J.; Burks, J.N.; Martin, A.A.; Holliday, K.S.; et al. Formation of uranium oxy-carbide and uranium carbide via conversion of polymer covered uranium dioxide by laser-based thermal processing. J. Nucl. Mater. 2024, 592, 154946. [Google Scholar] [CrossRef]
- Pandya, J.; Patel, P.D.; Shinde, S.; Gupta, S.D.; Jha, P.K. Dependence of strain on the thermoelectric properties of Uranium Carbide. Mater. Today Proc. 2021, 47, 571–575. [Google Scholar] [CrossRef]
- Petti, D.A.; Maki, J.; Hunn, J.D.; Pappano, P.; Barnes, C.; Saurwein, J.; Nagley, S.; Kendall, J.; Hobbins, R. The DOE Advanced Gas Reactor Fuel Development and Qualification Program. JOM 2010, 62, 62–66. [Google Scholar] [CrossRef]
- Demkowicz, P.A.; Collin, B.P.; Petti, D.A.; Hawkes, G.L.; Sterbentz, J.W.; Pham, B.T.; Scates, D.M.; Stacey, D.E. Results of the AGR-2 TRISO fuel performance demonstration irradiation experiment in the Advanced Test Reactor. Ann. Nucl. Energy 2021, 150, 107833. [Google Scholar] [CrossRef]
- Jiang, W.; Hales, J.D.; Spencer, B.W.; Collin, B.P.; Slaughter, A.E.; Novascone, S.R.; Toptan, A.; Gamble, K.A.; Gardner, R. TRISO particle fuel performance and failure analysis with BISON. J. Nucl. Mater. 2021, 548, 152795. [Google Scholar] [CrossRef]
- Jung, W.-H. Chapter 12—Gas-cooled fast reactor. In Nuclear Power Reactor Designs; Elsevier Inc.: Amsterdam, The Netherlands, 2024; pp. 245–257. [Google Scholar] [CrossRef]
- Dale, T. Nuclear thermal propulsion–Progress and potential. J. Space Saf. Eng. 2024, 11, 362–373. [Google Scholar] [CrossRef]
- Hamilton, S.R.; Zillnger, J.; Scott, R.; Jerred, N.; Palomares, K.; Salasin, J.; Miller, V.M. Resilience of uranium mononitride/zirconium carbide composites and uranium-zirconium carbonitride in hot hydrogen for nuclear thermal propulsion. J. Nucl. Mater. 2024, 596, 155101. [Google Scholar] [CrossRef]
- Laboure, V.M.; Schunert, S.; Terlizzi, S.; Prince, Z.M.; Ortensi, J.; Lin, C.-S.; Charlot, L.M.; DeHart, M.D. Automated power-following control for nuclear thermal propulsion startup and shutdown using MOOSE-based applications. Prog. Nucl. Energy 2023, 161, 104710. [Google Scholar] [CrossRef]
- Huston, P.C.; Drey, D.L.; Cureton, W.F.; Kurley, J.M.; Mcmurray, J.W.; Everett, S.M.; Park, C.; Lang, M. Characterization of zirconium carbide microspheres synthesized via internal gelation. J. Nucl. Mater. 2021, 557, 153218. [Google Scholar] [CrossRef]
- Kardoulaki, E.; White, J.T.; Williams, J.K.P.; Taylor, B.; Croell, A.; Rosales, J.; Taylor, C.A.; Widgeon Paisner, S.; Coons, T.; Byler, D.D.; et al. Synthesis, thermal conductivity, and hydrogen compatibility of a high melt point solid solution uranium carbide, (U0.2Zr0.8)C. Nucl. Mater. Energy 2022, 33, 101290. [Google Scholar] [CrossRef]
- Piro, M.H.A.; Dumas, J.C.; Lewis, B.J.; Thompson, W.T.; Iglesias, F.C. Fission Product Chemistry in Oxide Fuels. In Comprehensive Nuclear Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 173–199. [Google Scholar] [CrossRef]
- Perriot, R.; Liu, X.Y.; Stanek, C.R.; Andersson, D.A. Diffusion of Zr, Ru, Ce, Y, La, Sr and Ba fission products in UO2. J. Nucl. Mater. 2015, 459, 90–96. [Google Scholar] [CrossRef]
- Furcola, N.C. Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Neodymium 148 Method). Annu. Books ASTM Stand. 1996, 12, E321–E396. [Google Scholar]
- Grübmeier, H.; Naoumidis, A.; Thiele, B.A. Silicon Carbide Corrosion in High-Temperature Gas-Cooled Reactor Fuel Particles. Nucl. Technol. 1977, 35, 413–427. [Google Scholar] [CrossRef]
- Bian, Y.; Tang, K.; Tranell, G. A thermodynamic assessment of the Nd–C system. Calphad 2015, 51, 206–210. [Google Scholar] [CrossRef]
- Peng, Y.; Du, Y.; Zhang, L.; Sha, C.; Liu, S.; Zheng, F.; Zhao, D.; Yuan, X.; Chen, L. Thermodynamic modeling of the C–RE (RE = La, Ce and Pr) systems. Calphad 2011, 35, 533–541. [Google Scholar] [CrossRef]
- Wood, E.S.; Moczygemba, C.; Robles, G.; Acosta, Z.; Brigham, B.A.; Grote, C.J.; Metzger, K.E.; Cai, L. High temperature steam oxidation dynamics of U3Si2 with alloying additions: Al, Cr, and Y. J. Nucl. Mater. 2020, 533, 152072. [Google Scholar] [CrossRef]
- Moczygemba, C.; George, J.; Montoya, E.; Kim, E.; Robles, G.; Sooby, E. Structure characterization and steam oxidation performance of U3Si2 with Zr alloying additions. J. Nucl. Mater. 2022, 570, 153951. [Google Scholar] [CrossRef]
- Andersson, J.O.; Helander, T.; Hoglund, L.; Shi, P.; Sundman, B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002, 26, 273–312. [Google Scholar] [CrossRef]
- Faircloth, R.; Flowers, R.; Pummery, F. Vaporization of some rare-earth dicarbides. J. Inorg. Nucl. Chem. 1968, 30, 499–518. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Calderwood, F. The C-Nd (Carbon-Neodymium) System. Bull. Alloy Phase Diagrams 1986, 7, 557–558. [Google Scholar] [CrossRef]
- Paderno, Y.B.; Yupko, V.; Makarenko, G. Some Physical Properties of the Sesquicarbides of Yttrium, Lanthanum, Cerium, and Neodymium. Izvest Akad Nauk. SSSR Neorg Mater. 1969, 5, 386–388. [Google Scholar]
- Hultgren, R. Selected Values of Thermodynamic Properties of Metals and Alloys; Wiley: Hoboken, NJ, USA, 1963; Volume 2. [Google Scholar]
- Paderno, Y.B.; Yupko, V.; Makarenko, G. Characteristics of the High-Temperature Phase Transformation in Dicarbides of the Rare-Earth Metals (REM). Izv. Akad. Nauk SSSR Neorg. Mater. 1969, 5, 889. [Google Scholar]
- Winchell, P.; Baldwin, N.L. Mass Spectrometric-Knudsen Cell Study of the CeC2 Sublimation and Thermal and X-Ray Analyses of CeC2. J. Phys. Chem. 1967, 71, 4476–4479. [Google Scholar] [CrossRef]
- Makarenko, G.; Pustovoit, L.; Yupko, V.; Rud, B. The nature of the chemical bond in dicarbides of the rare-earth metals. Izv. Akad. Nauk SSSR Neorg. Mater. 1965, 1, 1787. [Google Scholar]
- Paderno, Y.B.; Yupko, V.; BM, R.; Makarenko, G. Physical properties of dicarbides of certain rare-earth metals. Izv. Akad. Nauk SSSR Neorg. Mater. 1966, 2, 626–629. [Google Scholar]
- Atoji, M. Magnetic and crystal structures of CeC2, PrC2, NdC2, TbC2, and HoC2 at low temperatures. J. Chem. Phys. 1967, 46, 1891–1901. [Google Scholar] [CrossRef]
- Okamoto, H. Supplemental Literature Review of Binary Phase Diagrams: Ag-Te, B-Mo, C-Nd, Cd-Te, Ce-S, Co-Er, Fe-La, Fe-V, Ho-Mo, Ho-V, Ni-Th, and Ni-U. J. Phase Equilibria Diffus. 2018, 39, 953–965. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Calderwood, F. The C-Ce (Carbon-Cerium) System. Bull. Alloy Phase Diagrams 1986, 7, 437–438. [Google Scholar] [CrossRef]
- Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W.M. First-principles study of rare-earth oxides. Phys. Rev. B 2005, 72, 205118. [Google Scholar] [CrossRef]
- Demkowicz, P.A.; Hunn, J.D.; Ploger, S.A.; Morris, R.N.; Baldwin, C.A.; Harp, J.M.; Winston, P.L.; Gerczak, T.J.; van Rooyen, I.J.; Montgomery, F.C.; et al. Irradiation performance of AGR-1 high temperature reactor fuel. Nucl. Eng. Des. 2016, 306, 2–13. [Google Scholar] [CrossRef]
- Minato, K.; Ogawa, T.; Fukuda, K.; Shimizu, M.; Tayama, Y.; Takahashi, I. Fission product behavior in TRISO-coated UO2 fuel particles. J. Nucl. Mater. 1994, 208, 266–281. [Google Scholar] [CrossRef]
- Gülol, O.O.; Çolak, U.; Yıldırım, B. Performance analysis of TRISO coated fuel particles with kernel migration. J. Nucl. Mater. 2008, 374, 168–177. [Google Scholar] [CrossRef]
- Demkowicz, P.A.; Hunn, J.D.; Morris, R.N.; van Rooyen, I.J.; Harp, J.M.; Ploger, S.A. AGR-1 Post Irradiation Examination Final Report; INL/EXT-15-36407; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2015. [Google Scholar]
- Stempien, J.D.; Hunn, J.D.; Morris, R.N.; Gerczak, T.J.; Demkowicz, P.A. AGR-2 TRISO Fuel Post-Irradiation Examination Final Report; INL/EXT-21-64279; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavazos, S.J.; Younus, S.; Uresti-Mireles, J.; Sooby, E.S.; Piro, M.H.A. Rare Earth Carbide (Nd-C and Ce-C) Synthesis and Characterization to Inform Phase Equilibrium in Advanced Nuclear Fuels. Metals 2024, 14, 1322. https://doi.org/10.3390/met14121322
Cavazos SJ, Younus S, Uresti-Mireles J, Sooby ES, Piro MHA. Rare Earth Carbide (Nd-C and Ce-C) Synthesis and Characterization to Inform Phase Equilibrium in Advanced Nuclear Fuels. Metals. 2024; 14(12):1322. https://doi.org/10.3390/met14121322
Chicago/Turabian StyleCavazos, Steven J., Sabiha Younus, Jesus Uresti-Mireles, Elizabeth S. Sooby, and Markus H. A. Piro. 2024. "Rare Earth Carbide (Nd-C and Ce-C) Synthesis and Characterization to Inform Phase Equilibrium in Advanced Nuclear Fuels" Metals 14, no. 12: 1322. https://doi.org/10.3390/met14121322
APA StyleCavazos, S. J., Younus, S., Uresti-Mireles, J., Sooby, E. S., & Piro, M. H. A. (2024). Rare Earth Carbide (Nd-C and Ce-C) Synthesis and Characterization to Inform Phase Equilibrium in Advanced Nuclear Fuels. Metals, 14(12), 1322. https://doi.org/10.3390/met14121322