Recent Advances in Indium Recovery
Abstract
1. Introduction
2. Research Methodology
3. Leaching
4. Adsorption
5. Liquid–Liquid Extraction
6. Miscellaneous Operations
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grohol:, M.; Veeh, C. Study on the Critical Raw Materials for the EU 2023-Final Report; Publications Office of the European Union: Brussels, Belgium, 2023. [Google Scholar] [CrossRef]
- Muller, B.; Van de Velde, K. Indium as Critical and Strategical Raw Material. Imat e.V. 2023. Available online: https://imat-ev.eu/ (accessed on 25 September 2024).
- American Chemical Society Green Chemistry Institute. Indium: An Illuminating Element. ACS. 2024. Available online: https://www.acs.org/greenchemistry/research-innovation/endangered-elements/indium.html (accessed on 20 September 2024).
- Available online: https://strategicmetalsinvest.com/indium-prices/ (accessed on 16 September 2024).
- Meng, J.; Chen, G.; Xu, L.; Xia, D.; Zhao, Z. Recycling of indium from waste LCD. Xiyou Jinshu/Chin. J. Rare Met. 2024, 48, 883–894. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; He, Y. Advancements in recycling technologies for waste CIGS photovoltaic modules. Nano Energy 2024, 128, 109847. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, M.; Liu, B.; Su, S.; Sun, H.; Yang, S.; Han, G. The extraction and separation of scarce critical metals: A review of gallium, indium and germanium extraction and separation from solid wastes. Separations 2024, 11, 91. [Google Scholar] [CrossRef]
- Kluczka, J. A review on the recovery and separation of gallium and indium from waste. Resources 2024, 13, 35. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, Y.; Zhang, Z.; Wang, W.; Peng, W.; Cao, Y. A perspective on molecular recognition technology for recovering critical metals from minerals and processing wastes. Sep. Purif. Technol. 2024, 347, 127734. [Google Scholar] [CrossRef]
- Golzar-Ahmadi, M.; Bahaloo-Horeh, N.; Pourhossein, F.; Norouzi, F.; Schoenberger, N.; Hintersatz, C.; Chakankar, M.; Holuszko, M.; Kaksonen, A.H. Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste. Biotechnol. Adv. 2024, 77, 108438. [Google Scholar] [CrossRef]
- Castro, J.P.; Garcia, J.A.; Souza, R.G.; Pereira-Filho, E.R. Indium recovery from end-of-life e-waste: Important details related to spectroanalytical determination and recycling viability. J. Brazilian Chem. Soc. 2024, 35, e-20230201. [Google Scholar] [CrossRef]
- Constantin, A.; Pourhossein, F.; Ray, D.; Farnaud, S. Investigating the acidophilic microbial community’s adaptation for enhancement indium bioleaching from high pulp density shredded discarded LCD panels. J. Environ. Manag. 2024, 365, 121521. [Google Scholar] [CrossRef]
- Gao, Y.; Fan, M.; Cheng, X.; Liu, X.; Yang, H.; Ma, W.; Guo, M.; Li, L. Deep eutectic solvent: Synthesis, classification, properties and application in macromolecular substances. Int. J. Biol. Macromol. 2024, 278, 134593. [Google Scholar] [CrossRef]
- Jin, X.; Jin, B.; Rao, L.; Cao, K.; Huang, Z.; Chen, F.; Huang, Q. Separation of indium and tin from ITO powders with short-chain dicarboxylic acid-ChCl deep eutectic solvents: Indium tin leaching and splitting mechanism. Proc. Saf. Environ. 2024, 185, 1268–1276. [Google Scholar] [CrossRef]
- Le Khac, D.; Chowdhury, S.; Soheil Najm, A.; Luengchavanon, M.; mebdir Holi, A.; Shah Jamal, M.; Hua Chia, C.; Techato, K.; Selvanathan, V. Efficient laboratory perovskite solar cell recycling with a one-step chemical treatment and recovery of ITO-coated glass substrates. Sol. Energy 2024, 267, 112214. [Google Scholar] [CrossRef]
- Grinstead, K. U.S. Environmental Protection Agency. Available online: https://www.epa.gov/sites/default/files/2015-04/documents/chlorobenzene.pdf (accessed on 16 September 2024).
- Unnamed. IRIS Advanced Search. U.S. Environmental Protection Agency. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 16 September 2024).
- Li, S.; Wang, H.; Wang, S.; Xie, F. Study on the kinetics and mechanism of ultrasonic-microwave synergistic enhancement for leaching indium from zinc oxide dust. Chem. Pap. 2024, 78, 3667–3685. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Huang, Y.; Cao, Y.; Chen, J.; Wang, L.; Liu, Y.; Fan, Y. Efficient and clean treatment of indium-bearing zinc ferrite: A new approach using a water-regulated deep eutectic solvent. Sep. Purif. Technol. 2024, 347, 127576. [Google Scholar] [CrossRef]
- Liu, Q.; Li, C.X.; Gu, Z.H.; Li, C.W.; Wang, Q.L. Study on pre-oxidation of silver concentrate and leaching behaviour of Zn, Cu and In during oxygen-pressure leaching. Hydrometallurgy 2024, 228, 106358. [Google Scholar] [CrossRef]
- Nan, T.; Yang, J.; Aromaa-Stubb, R.; Zhu, Q.; He, H.; Lundström, M. Extracting valuable metals from zinc sulfide concentrate: A comprehensive simulation-based life cycle assessment study of oxidative pressure leaching. Miner. Eng. 2024, 216, 108888. [Google Scholar] [CrossRef]
- Parsa, A.; Bahaloo Horeh, N.; Mousavi, S.M. A hybrid thermal-biological recycling route for efficient extraction of metals and metalloids from end-of-life liquid crystal displays (LCDs). Chemosphere 2024, 352, 141408. [Google Scholar] [CrossRef]
- Parsa, A.; Bahaloo-Horeh, N.; Mousavi, S.M. A kinetic study of indium, aluminum, arsenic, and strontium extraction from LCDs using biometabolites produced by Aspergillus niger. Miner. Eng. 2024, 205, 108441. [Google Scholar] [CrossRef]
- Xu, L.; Chen, G.; Zhang, X.; Yang, Y.; Leng, C.; Yang, C.; Tian, Y.; Zhao, Z. Waste ITO target recycling for efficient indium recovery through a closed-loop process. J. Environ. Chem. Eng. 2024, 12, 112136. [Google Scholar] [CrossRef]
- Zheng, K.; Benedetti, M.F.; Jain, R.; Pollmann, K.; van Hullebusch, E.D. Recovery of gallium (and indium) from spent LEDs: Strong acids leaching versus selective leaching by siderophore desferrioxamine E. Sep. Purif. Technol. 2024, 338, 126566. [Google Scholar] [CrossRef]
- Zheng, K.; Benedetti, M.F.; Jain, R.; Guy, B.M.; Pollmann, K.; van Hullebusch, E.D. Selective leaching of indium from spent LCD screens by siderophore desferrioxamine E. J. Hazard. Mater. 2024, 469, 134013. [Google Scholar] [CrossRef]
- Hintersatz, C.; Tsushima, S.; Kaufer, T.; Kretzschmar, J.; Thewes, A.; Pollmann, K.; Jain, R. Efficient density functional theory directed identification of siderophores with increased selectivity towards indium and germanium. J. Hazard. Mater. 2024, 478, 135523. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, L.; Xu, D.; Cheng, N.; Wang, M.; Shao, P.; Yang, L.; Yao, Z.; Zhao, C.; Feng, J.; et al. Deep separation between In(III) and Fe(III) ions by regulating the Lewis basicity of adsorption sites on electrospun fibers. Adv. Funct. Mater. 2024, 34, 2313443. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Tian, H.; Li, K.; Zhao, X. An anionic metal-organic framework decorated with tartaric acid for enhanced adsorption of indium ions. Micropor. Mesopor. Mat. 2024, 370, 113059. [Google Scholar] [CrossRef]
- Protsak, I.; Stockhausen, M.; Brewer, A.; Owton, M.; Hofmann, T.; Kleitz, F. Enhanced selective extraction of indium and gallium using mesoporous sorbents. Chem. Eng. J. 2024, 498, 154468. [Google Scholar] [CrossRef]
- Wang, W.; Xu, X.; Lai, D.; Xu, Q.; Li, J.; Wang, Y. Selective isolation of gallium and indium from waste photovoltaic modules facilitated by extractant-mesoporous activated carbon composites. Sep. Purif. Technol. 2024, 330, 125510. [Google Scholar] [CrossRef]
- Xiong, Y.; Rao, T.; Lou, Z.; Cui, J.; Yu, H.; Feng, X. A novel zirconium glyphosine carbon nanotube composite for fast and ultraeffective In(Ⅲ) capture. Sep. Purif. Technol. 2024, 350, 128004. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, B.; Wang, L.; Shao, P.; Yang, L.; Zhao, C.; Wang, L.; Yang, J.; Yang, H.; Li, M. Regulating the electronic microenvironment of adsorption sites in nanofiber for promoting In(III) capture performance. Sep. Purif. Technol. 2024, 332, 125880. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Gao, X.; Liu, B. Facile preparation of metal-organic framework beads for effective capture of indium ion. J. Solid State Chem. 2024, 329, 124452. [Google Scholar] [CrossRef]
- Yao, D.; Ge, T.; Xu, L.; Chen, G.; Yao, C.; Yang, C.; Tian, Y.; Zhao, Z. Complexation mechanism of crown ether with indium in the presence of KI: Toward efficient recovery of indium from secondary resources. Sep. Purif. Technol. 2023, 308, 122936. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, Y.; Xu, L.; Yao, C.; Zhang, X.; Yang, C.; Tian, Y. Recovery of indium by solvent extraction with crown ether in the presence of KCl and stripping with HCl: A mechanistic study. Hydrometallurgy 2024, 229, 106378. [Google Scholar] [CrossRef]
- Dhiman, S.; Gupta, B. Cyphos IL 104 assisted extraction of Indium and recycling of indium, tin and zinc from discarded LCD screen. Sep. Purif. Technol. 2020, 237, 116407. [Google Scholar] [CrossRef]
- Dhiman, S.; Agarwal, S.; Gupta, H. Application of phosphonium ionic liquids to separate Ga, Ge and In utilizing solvent extraction: A review. J. Ion. Liq. 2024, 4, 100080. [Google Scholar] [CrossRef]
- Van den Bossche, A.; Vereycken, W.; Vander Hoogerstraete, T.; Dehaen, W.; Binnemans, K. Recovery of gallium, indium, and arsenic from semiconductors using tribromide ionic liquids. ACS Sustain. Chem. Eng. 2019, 7, 11451–11459. [Google Scholar] [CrossRef]
- Grigorieva, N.A.; Fleitlikh, I.Y.; Zagrebin, S.A.; Kozlov, K.M. Indium extraction from sulfuric acid solutions of zinc production. Tsvet. Metall. 2024, 2024, 40–45. [Google Scholar] [CrossRef]
- Zheng, K.; Benedetti, M.F.; van Hullebusch, E.D. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste)—A review. J. Environ. Manag. 2023, 347, 119043. [Google Scholar] [CrossRef]
- Silwamba, M.; Chibesa, M.; Oteng, E.V.; Alagha, L. Extraction of critical elements-gallium, germanium, and indium-using ionic Liquids: A review. Miner. Process. Extr. Metall. Rev. 2024, 1–25. [Google Scholar] [CrossRef]
- Zhang, K.; Li, B.; Wu, Y.; Wang, W.; Li, R.; Zhang, Y.; Zuo, T. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave. Waste Manag. 2017, 64, 236–243. [Google Scholar] [CrossRef]
- Wu, Y.; Ren, Z.; Liu, H.; Guo, F.; Tian, S.; Yang, J. Phase transfer-assisted indium recovery from spent liquid crystal display panels and its extension in preparing indium-based electrocatalysts for CO2 reduction. Chem. Eng. J. 2024, 492, 152119. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Wang, S.; Xie, F.; Sun, X. Mechanism and kinetics of ultrasound-enhanced CaCO3 precipitation for indium enrichment in zinc oxide dust leaching solution. Ultrason. Sonochem. 2024, 110, 107046. [Google Scholar] [CrossRef]
- Kaczorowska, M.A. The latest achievements of liquid membranes for rare earth elements recovery from aqueous solutions—A mini review. Membranes 2023, 13, 839. [Google Scholar] [CrossRef]
- Hemmati, A.; Asadollahzadeh, M.; Torkaman, R. Assessment of metal extraction from e-waste using supported IL membrane with reliable comparison between RSM regression and ANN framework. Sci. Rep. 2024, 14, 3882. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-F.; Chen, Y.; Chiueh, P.-T.; Lo, S.-L. Metal recovery from copper indium gallium selenide solar cells by using microwave pyrolysis, thermal oxidation and thermal chlorination. Process Saf. Environ. 2024, 190, 226–232. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Ma, W.; Cai, C.; Li, S. Clean and efficient recovery of gallium–indium alloy from gallium-based liquid metal waste using a two-stage vacuum distillation method. Vacuum 2024, 221, 112884. [Google Scholar] [CrossRef]
- Pang, J.; Dong, C.; Xu, B.; Wu, H.; Kong, L.; Yang, B. Kinetics of indium separation and recovery from In–Sn alloys in ITO waste target products via vacuum evaporation. Vacuum 2024, 222, 113076. [Google Scholar] [CrossRef]
- Peer, M.; Fehn, T.; Hofmann, A.; Berninger, B.; Kunz, W. Recycling of critical metals from light-emitting diodes. Chem. Ing. Tech. 2024, 00, 1–6. [Google Scholar] [CrossRef]
- Illes, B.I.; Kekesi, T. The relative efficiency of electrowinning indium from chloride electrolytes. J. Appl. Electrochem. 2022, 53, 271–284. [Google Scholar] [CrossRef]
- Teknetzi, I.; Click, N.; Holgersson, S.; Ebin, B. An environmentally friendly method for selective recovery of silver and ITO particles from flexible CIGS solar cells. Sust. Mater. Technol. 2024, 39, e00844. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, L.; Yang, B.; Xu, B. Clean and sustainable recovery of valuable materials from InP scrap via controlled-pressure pyrolysis–spray condensation. J. Clean. Prod. 2024, 475, 143613. [Google Scholar] [CrossRef]
Year | $/kg, on 1 January |
---|---|
2018 | 380.10 |
2019 | 428.61 |
2020 | 315.11 |
2021 | 315.10 |
2022 | 477.10 |
2023 | 442.30 |
2024 | 561.60 |
Acid | % In Leached | % Sn Leached |
---|---|---|
Oxalic | >99 | >99 |
Maleic | >99 | >99 |
Succinic | 59.7 | 70.8 |
In | Ga | Cu | Sn | Pb | Fe | Al | Si |
---|---|---|---|---|---|---|---|
6.4 mg/L | 28.1 mg/L | 29.3 g/L | 3.2 g/L | 1.8 g/L | 0.22 g/L | 0.32 g/L | 0.23 g/L |
Adsorbent | a[In]max, mg/g | Reference |
---|---|---|
PCA-nanofibers | 135.7 (single In solution) | [28] |
PCA-nanofibers | 111.6 (mixed In-Fe(III) sol.) | [28] |
MOF-808-TA | 172.4 | [29] |
SBA-15 | 5.2 | [30] |
SiO2-PMDA | 38.0 | [30] |
2ZrGP-CNT | 193.7 | [32] |
PCA-nanofibers | 137.9 | [33] |
AM-nanofiber | 43.1 | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alguacil, F.J. Recent Advances in Indium Recovery. Metals 2024, 14, 1282. https://doi.org/10.3390/met14111282
Alguacil FJ. Recent Advances in Indium Recovery. Metals. 2024; 14(11):1282. https://doi.org/10.3390/met14111282
Chicago/Turabian StyleAlguacil, Francisco Jose. 2024. "Recent Advances in Indium Recovery" Metals 14, no. 11: 1282. https://doi.org/10.3390/met14111282
APA StyleAlguacil, F. J. (2024). Recent Advances in Indium Recovery. Metals, 14(11), 1282. https://doi.org/10.3390/met14111282