Current Challenges in Corrosion Research
1. Introduction
2. Overview and Scope
3. Contributions
4. Conclusions and Outlook
Conflicts of Interest
List of Contributions
- Yoo, Y.R.; Choi, S.H.; Kim, Y.S. Effect of Laser Shock Peening on the Stress Corrosion Cracking of 304L Stainless Steel. Metals 2023, 13, 1–21. https://doi.org/10.3390/met13030516.
- Ruan, X.; Yang, L.; Wang, Y.; Dong, Y.; Xu, D.; Zhang, M. Biofilm-Induced Corrosion Inhibition of Q235 Carbon Steel by Tenacibaculum mesophilum D-6 and Bacillus sp. Y-6. Metals 2023, 13, 1–13. https://doi.org/10.3390/met13040649.
- Grgur, B.N.; Popovic, A.S.; Salem, A. Influence of Alkyd Composite Coatings with Polyaniline Doped with Different Organic Acids on the Corrosion of Mild Steel. Metals 2023, 13, 1–14.
- Dorofeeva, T.I.; Fedorischeva, M.V.; Gubaidulina, T.A.; Sergeev, O.V.; Sungatulin, A.R.; Sergeev, V.P. Investigation of Corrosion Properties and Composition of the Surface Formed on AISI 321 Stainless Steel by Ion Implantation. Metals 2023, 13, 1468. https://doi.org/10.3390/met13081468.
- Lanzutti, A.; Sordetti, F.; Marin, E.; Andreatta, F.; Carabillo, A.; Querini, M.; Porro, S.; Rondinella, A.; Magnan, M.; Fedrizzi, L. The Use of Thin Films as Defect Sealants to Increase the Corrosion Resistance of Thermal Spray Coatings. Metals 2023, 13, 1778. https://doi.org/10.3390/met13101778.
- Preda, L.; Leau, S.A.; Donath, C.; Neacsu, E.I.; Maxim, M.E.; Sătulu, V.; Paraschiv, A.; Marcu, M. Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions. Metals 2023, 13, 1–16. https://doi.org/10.3390/met13111881.
- Zhang, Z.; Zhang, J.; Zhao, X.; Liu, X.; Cheng, X.; Jiang, S.; Zhang, Q. Effect of Al/Mg Ratio on the Microstructure and Phase Distribution of Zn-Al-Mg Coatings. Metals 2023, 13, 1963. https://doi.org/10.3390/met13121963.
- Hernández-Concepción, B.; Méndez-Guerra, A.; Souto, R.M.; Izquierdo, J. Evaluation of the Applicability of Voltammetric Modes in Scanning Electrochemical Microscopy for in situ Corrosion Characterisation of Copper-Based Materials. Metals 2023, 13, 1965. https://doi.org/10.3390/met13121965.
- Freire, L.; Ezpeleta, I.; Sánchez, J.; Castro, R. Advanced EIS-Based Sensor for Online Corrosion and Scaling Monitoring in Pipelines of Geothermal Power Plants. Metals 2024, 14, 279. https://doi.org/10.3390/met14030279.
- Li, T.; Wang, D.; Zhang, S.; Wang, J. Corrosion Behavior of High Entropy Alloys and Their Application in the Nuclear Industry—An Overview. Metals 2023, 13, 363. https://doi.org/10.3390/met13020363.
References
- Shekari, E.; Khan, F.; Ahmed, S. Economic risk analysis of pitting corrosion in process facilities. Int. J. Press. Vessel. Pip. 2017, 157, 51–62. [Google Scholar] [CrossRef]
- Kruger, J. Cost of Metallic Corrosion. In Uhlig’s Corrosion Handbook, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 15–20. [Google Scholar] [CrossRef]
- Frankel, G.S. Electrochemical Techniques in Corrosion: Status, Limitations, and Needs. J. ASTM Int. 2008, 5, JAI101241. [Google Scholar] [CrossRef]
- Farh, H.M.H.; Seghier, M.E.A.B.; Zayed, T. A comprehensive review of corrosion protection and control techniques for metallic pipelines. Eng. Fail. Anal. 2023, 143, 106885. [Google Scholar] [CrossRef]
- Al-Moubaraki, A.H.; Obot, I.B. Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook. J. Saudi Chem. Soc. 2021, 25, 101370. [Google Scholar] [CrossRef]
- Hu, J.Y.; Zhang, S.S.; Chen, E.; Li, W.G. A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Constr. Build. Mater. 2022, 325, 126718. [Google Scholar] [CrossRef]
- Asri, R.I.M.; Harun, W.S.W.; Samykano, M.; Lah, N.A.C.; Ghani, S.A.C.; Tarlochan, F.; Raza, M.R. Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng. C 2017, 77, 1261–1274. [Google Scholar] [CrossRef]
- Chajduk, E.; Bojanowska-Czajka, A. Corrosion mitigation in coolant systems in nuclear power plants. Prog. Nucl. Energy 2016, 88, 1–9. [Google Scholar] [CrossRef]
- Khalaf, A.H.; Xiao, Y.; Xu, N.; Wu, B.; Li, H.; Lin, B.; Nie, Z.; Tang, J. Emerging AI technologies for corrosion monitoring in oil and gas industry: A comprehensive review. Eng. Fail. Anal. 2024, 155, 107735. [Google Scholar] [CrossRef]
- Guo, L.; Obot, I.B.; Zheng, X.; Shen, X.; Qiang, Y.; Kaya, S.; Kaya, C. Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Appl. Surf. Sci. 2017, 406, 301–306. [Google Scholar] [CrossRef]
- Misawa, T.; Asami, K.; Hashimoto, K.; Shimodaira, S. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel. Corros. Sci. 1974, 14, 279–289. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Ramadas, H.; Nath, A.K.; Madapana, D.; Majumdar, J.D. Role of heat treatment and laser shock peening on the electrochemical corrosion properties of 15–5 precipitation hardening stainless steel manufactured by laser powder bed fusion process. Appl. Surf. Sci. 2024, 676, 160969. [Google Scholar] [CrossRef]
- An, T.; Wei, B.; Ma, R.; Chen, L.; Wang, S.; Xu, M.; Liu, K. Study on the high-temperature corrosion mechanism of boiler steel 15CrMoG in ammonia-coal co-firing environment. Fuel 2024, 378, 132892. [Google Scholar] [CrossRef]
- Li, Z.X.; Zhang, L.M.; Wang, W.; Li, Z.K.; Zhang, Y.; Ma, A.L.; Zheng, Y.G. New insights into the damage mechanism of a Zr-Ti based bulk metallic glass under cavitation erosion in deionized water. Wear 2024, 558–559, 205561. [Google Scholar] [CrossRef]
- Sun, W.; Wu, B.; Ming, H.; Wang, J.; Han, E.H. Effect of cold work level on the crack propagation behaviour of 316LN stainless steel in high-temperature pressurized water. J. Nucl. Mater. 2025, 603, 155403. [Google Scholar] [CrossRef]
- Salem, M.; Le Roux, S.; Dour, G.; Put, A.V. Role of oxidation in thermal fatigue damage mechanisms and life of X38CrMoV5 (AISI H11) hot work tool steel. Int. J. Fatigue 2025, 190, 108584. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, J.; Zhong, Y.; Zhou, M.; Qiu, X.; Zhou, Y.; Yang, J. Research progress on LBE corrosion-resistant coatings: A review. Prog. Nucl. Energy 2024, 176, 105358. [Google Scholar] [CrossRef]
- Obot, I.B.; Sorour, A.A.; Malede, Y.C.; Chen, T.; Wang, Q.; Aljeaban, N. A review study on the challenges and progress of corrosion inhibitor testing under extreme conditions in the oil and gas industries. Geoenergy Sci. Eng. 2023, 226, 211762. [Google Scholar] [CrossRef]
- Gupta, R.; Verma, R.; Kango, S.; Constantin, A.; Kharia, P.; Saini, R.; Kudapa, V.K.; Mittal, A.; Prakash, J.; Chamoli, P. A critical review on recent progress, open challenges, and applications of corrosion-resistant superhydrophobic coating. Mater. Today Commun. 2023, 34, 105201. [Google Scholar] [CrossRef]
- Al Shibli, F.S.Z.S.; Bose, S.; Kumar, P.S.; Rajasimman, M.; Rajamohan, N.; Vo, D.V.N. Green technology for sustainable surface protection of steel from corrosion: A review. Environ. Chem. Lett. 2022, 20, 929–947. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Wang, X. Progress in in-situ electrochemical monitoring techniques for chloride ions in concrete structures. Int. J. Electrochem. Sci. 2024, 19, 100744. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, B.; Grgur, B.; Wang, J. Current Challenges in Corrosion Research. Metals 2024, 14, 1194. https://doi.org/10.3390/met14101194
Díaz B, Grgur B, Wang J. Current Challenges in Corrosion Research. Metals. 2024; 14(10):1194. https://doi.org/10.3390/met14101194
Chicago/Turabian StyleDíaz, Belén, Branimir Grgur, and Jianqiang Wang. 2024. "Current Challenges in Corrosion Research" Metals 14, no. 10: 1194. https://doi.org/10.3390/met14101194
APA StyleDíaz, B., Grgur, B., & Wang, J. (2024). Current Challenges in Corrosion Research. Metals, 14(10), 1194. https://doi.org/10.3390/met14101194