Formability Characterization Using Curvature and Strain-Rate-Based Limit Strain Detection Methods Applied to Marciniak, Nakazima, and Stretch-Bend Tests
Abstract
:1. Introduction
2. Material—Tensile Properties
3. Formability Experimental Methods
3.1. Formability Testing Procedures
3.2. DIC Strain Measurement
3.3. Spline Interpolation
4. Limit Strain Detection: The Enhanced Curvature Approach
4.1. Curvature Calculation
4.2. Neck Detection and Thresholding of the Curvature
4.3. Through-Thickness Imperfection Metric
4.4. Determination of Limit Strains Using ISO and Time-Dependent Methods
4.4.1. ISO12004-2:2008 Implementation
4.4.2. Limit Strain Detection Based upon the Local Strain-Rate
5. Results and Discussion
5.1. Marciniak and Nakazima Strain Paths
5.2. On the Relationship between Curvature and the Imperfection Factor
5.3. Determination of Forming Limit Curves
5.3.1. Formability Characterization for In-Plane Stretching Using Marciniak Tests
5.3.2. Formability Characterization Using Nakazima Tests
5.4. Application to Angular Stretch Bending with Through-Thickness Strain Gradients
6. Summary and Conclusions
- The measured FLC0 strains for AA5182-O, using the Marciniak tooling, were 0.198, 0.188, and 0.208 for the ECM, ISO, and LBF approaches, respectively. These values were in good accord with previously published experimental data (0.193) and the theoretically predicted upper bound FLC0 (0.194).
- The Nakazima-tested samples often exhibited double necks which affected the ISO limit strains determined from parabolic fitting of the strain distribution. PLC effects on the final spatial strain distributions further degraded the ISO parabolic fitting. The local ECM and LBF were in good agreement. Similar agreement between the ECM and LBF methods was observed for the stretch–bend experiments for which the ISO approach is not applicable.
- Imperfection factor plots under plane strain conditions with Marciniak and Nakazima punches reveal that variance in formability measurements can be partially attributed to (a) PLC effects in AA5182-O and (b) test-to-test variability in the strain at which the onset of necking begins. Thus, for all necking detection schemes, there is a stochastic component to necking attributable to material and testing variability.
- In uniaxial tension, the 25.4 mm width geometry in combination with the Nakazima punch was found to be sensitive to the orientation of line slices, and a line slice orientation perpendicular to the neck width produced marginally lower ECM limit strains. Future ECM applications should consider the effect of neck/fracture orientation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mallet, F.M. The Design of Sheet for production metal aircraft parts. SAE J. 1944, 52, 526–533. [Google Scholar]
- Swift, H.W. Plastic Instability Under Plane Stress. J. Mech. Phys. Solids 1952, 1, 1–18. [Google Scholar] [CrossRef]
- Considere, M. L’emploi du Fer et Lacier Dans Les Constructio. Ann. Ponts Chausses 1885, 9, 574–775. [Google Scholar]
- Keeler, S.P. Determination of Forming Limits in Automotive Stampings. SAE Trans. 1966, 74, 1–9. [Google Scholar]
- Goodwin, G. Application of Strain Analysis to Sheet Metal Forming in the Press Shop. In Automotive Engineering Congress and Exposition; SAE International: Warrendale, PA, USA, 1968. [Google Scholar]
- Painter, M.; Pearce, R. Instability and Fracture in Sheet Metal. J. Phys. D Appl. Phys. 1974, 7, 992–1002. [Google Scholar] [CrossRef]
- Laukonis, J.V.; Ghosh, A.K. Effects of Strain Path Changes on the Formability of Sheet Metals. Metall. Trans. A 1978, 9, 1849–1856. [Google Scholar] [CrossRef]
- Kleemola, H.J.; Kumpulainen, J.O. Factors Influencing the Forming Limit Diagram: Part I—The Experimental Determination of the Forming Limits of Sheet Steel. J. Mech. Work. Technol. 1980, 3, 289–302. [Google Scholar] [CrossRef]
- Grumbach, M.; Sanz, G. Influence de quelques paramètres sur les courbes limites d’emboutissage. Rev. Métallurgie 1972, 69, 273–290. [Google Scholar] [CrossRef]
- Marciniak, Z.; Kuczyński, K. Limit Strains in the Process of Stretch-Forming Sheet Metal. Int. J. Mech. Sci. 1967, 9, 609–612. [Google Scholar] [CrossRef]
- Storen, S.; Rice, J.R. Localized Necking in Thin Sheets. J. Mech. Phys. Solids 1975, 23, 421–441. [Google Scholar] [CrossRef]
- Hutchinson, J.; Neale, K.; Needleman, A. Sheet Necking—I. Validity of Plane Stress Assumptions of the Long-Wavelength Approximation. In Mechanics of Sheet Metal Forming; Springer: Boston, MA, USA, 1978; Volume 1, pp. 111–126. [Google Scholar]
- ISO/DIS 12004-2:2008; Metallic Materials—Sheet and Strip—Determination of Forming Limit Curves—Part 2: Determination of Forming Limit Curves in the Laboratory. International Organization for Standardization: Geneva, Switzerland, 2008.
- Nakazima, K.; Kikuma, T.; Hasuka, K. Study on the Formability of Steel Sheets. Yamata Tech. Rep. 1968, 264, 8517–8530. [Google Scholar]
- Martínez-Donaire, A.; Garcia-Lomas, F.; Vallellano, C. New Approaches to Detect the Onset of Localised Necking in Sheets under Through-Thickness Strain Gradients. Mater. Des. 2014, 57, 135–145. [Google Scholar] [CrossRef]
- Vysochinskiy, D.; Coudert, T.; Hopperstad, O.S.; Lademo, O.-G.; Reyes, A. Experimental Detection of Forming Limit Strains on Samples with Multiple Local Necks. J. Mater. Process. Technol. 2016, 227, 216–226. [Google Scholar] [CrossRef]
- Eberle, B.; Volk, W.; Hora, O. Automatic Approach in the Evaluation of the Experimental FLD with a Full 2d Approach Based on a Time Depending Method. In Proceedings of the Numisheet 2007—Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, Switzerland, 1–5 September 2008. Part A. [Google Scholar]
- Zhang, R.; Shi, Z.; Shao, Z.; Dean, T.A.; Lin, J. A Novel Spatio-Temporal Method for Determining Necking and Fracture Strains of Sheet Metals. Int. J. Mech. Sci. 2021, 189, 105977. [Google Scholar] [CrossRef]
- Volk, W.; Hora, P. New Algorithm for a Robust User-Indepdent Evaluation of Beginning Instability for the Experimental FLC Determination. Int. J. Mater. Form. 2011, 4, 336–346. [Google Scholar] [CrossRef]
- Hotz, W.; Merklein, M.; Kuppert, A.; Friebe, H.; Klein, M. Time Dependent FLC Determination Comparison of Different Algorithms to Detect the Onset of Unstable Necking before Fracture. Key Eng. Mater. 2013, 549, 397–404. [Google Scholar] [CrossRef]
- Min, J.; Stoughton, T.B.; Carsley, J.E.; Lin, J. An Improved Curvature Method of Detecting the Onset of Localized Necking in Marciniak Tests and Its Extension to Nakazima Tests. Int. J. Mech. Sci. 2017, 123, 238–252. [Google Scholar] [CrossRef]
- DiCecco, S.; Butcher, C.; Worswick, M.; Chu, E.; Boettcher, E.; Shi, C. Application of Time and Position Dependent Localized Necking Criteria to High Strength Aluminum Alloys at Elevated Temperatures. In Proceedings of the Forming Technology Forum, Ohlstadt, Germany, 12–13 September 2016. [Google Scholar]
- DiCecco, S.; Butcher, C.; Worswick, M.; Boettcher, E.; Chu, E.; Shi, C. Determination of Forming Limit Diagrams of AA6013-T6 Aluminum Alloy Sheet Using a Time and Position Dependent Localized Necking Criterion. IOP Conf. Ser. Mater. Sci. Eng. 2016, 159, 012009. [Google Scholar] [CrossRef]
- DiCecco, S.; Di Ciano, M.; Butcher, C.; Worswick, M. Limit Strain Characterization in an Aluminum Die-Quenching Process. In Proceedings of the IDDRG 2018, Waterloo, ON, Canada, 3–7 June 2018. [Google Scholar]
- Zhang, R.; Li, J.; Shi, Z.; Lin, J. Experimental Formability Evaluation for Aluminium Alloy Sheets under Hot Stamping Conditions. Mater. Res. Proc. 2024, 44, 90–99. [Google Scholar]
- Keeler, S.P.; Backofen, W.A. Plastic Instability and Fracture in Sheets Stretched over Rigid Punches. ASM Trans. Q. 1963, 56, 25–48. [Google Scholar]
- DiCecco, S.; Di Ciano, M.; Butcher, C.; Worswick, M. Numerical and Experimental Investigation of the Formability of AA6013-T6. In Proceedings of the IDDRG 2017, Munich, Germany, 2–6 July 2017. [Google Scholar]
- Ghosh, A.K.; Hecker, S.S. Stretching Limits in Sheet Metals: In-Plane versus out-of-Plane Deformation. Metall. Trans. 1974, 5, 2161–2164. [Google Scholar] [CrossRef]
- Min, J.; Stoughton, T.B.; Carsley, J.E.; Lin, J. Compensation for Process-Dependent Effects in the Determination of Localized Necking Limits. Int. J. Mech. Sci. 2016, 117, 115–134. [Google Scholar] [CrossRef]
- Noder, J.; Butcher, C. A Comparative Investigation into the Influence of the Constitutive Model on the Prediction of In-Plane Formability for Nakazima and Marciniak Tests. Int. J. Mech. Sci. 2019, 163, 105138. [Google Scholar] [CrossRef]
- Rahmaan, T.; Abedini, A.; Butcher, C.; Pathak, N.; Worswick, M. Investigation into the Shear Stress, Localization and Fracture Behaviour of DP600 and AA5182-O Sheet Metal Alloys under Elevated Strain Rates. Int. J. Impact Eng. 2017, 108, 303–321. [Google Scholar] [CrossRef]
- Tian, N.; Wang, W.; Feng, Z.; Song, W.; Wang, T.; Zeng, Z.; Zhao, G.; Qin, G. Portevin-Le Chatelier Characterization of Quenched Al-Mg Alloy Sheet with Different Mg Concentrations. Materials 2022, 15, 4965. [Google Scholar] [CrossRef] [PubMed]
- McCormick, P. The Portevin-Le Chatelier Effect in an Al-Mg-Si Alloy. Acta Metall. 1971, 19, 463–471. [Google Scholar] [CrossRef]
- Robinson, J.M.; Shaw, M.P. Microstructural and Mechanical Influences on Dynamic Strain Aging Phenomena. Int. Mater. Rev. 1994, 39, 113–122. [Google Scholar] [CrossRef]
- Wang, K.; Carsley, J.; He, B.; Li, J.; Zhang, L. Measuring Forming Limit Strains with Digital Image Correlation Analysis. J. Mater. Process. Technol. 2014, 214, 1120–1130. [Google Scholar] [CrossRef]
- Reinsch, C. Smoothing by spline functions. Numer. Math. 1967, 10, 177–183. [Google Scholar] [CrossRef]
- Fast-Irvine, C.; Abedini, A.; Noder, J.; Butcher, C. An Experimental Methodology to Characterize the Plasticity of Sheet Metals from Uniaxial to Plane Strain Tension. Exp. Mech. 2021, 61, 1381–1404. [Google Scholar] [CrossRef]
- Ayres, R.A.; Wenner, M.L. Strain and Strain-Rate Hardening Effects in Punch Stretching of 5182-O Aluminum at Elevated Temperatures. Metall. Trans. A 1979, 10, 41–46. [Google Scholar] [CrossRef]
- Wu, P.D.; Jain, M.; Savoie, J.; MacEwen, S.R.; Tugcu, P.; Neale, K.W. Evaluation of Anisotropic Yield Functions for Aluminum Sheets. Int. J. Plast. 2003, 19, 121–138. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, D.; Choi, S.H.; Chung, K.; Shin, K.S.; Barlat, F.; Oh, K.H.; Youn, J.R. Formability of AA5182/Polypropylene/AA5182 Sandwich Sheets. J. Mater. Process. Technol. 2003, 139, 1–7. [Google Scholar] [CrossRef]
- Miles, M.P.; Nelson, T.W.; Decker, B.J. Formability and Strength of Friction-Stir-Welded Aluminum Sheets. Metall. Mater. Trans. A 2004, 35A, 3461–3468. [Google Scholar] [CrossRef]
- Banabic, D.; Aretz, H.; Paraianu, L.; Jurco, P. Application of Various FLD Modelling Approaches. Model. Simul. Mater. Sci. Eng. 2005, 13, 759–769. [Google Scholar] [CrossRef]
- Serenelli, M.J.; Bertinetti, M.A.; Signorelli, J.W. Study of Limit Strains for FCC and BCC Sheet Metal Using Polycrystal Plasticity. Int. J. Solids Struct. 2011, 48, 1109–1119. [Google Scholar] [CrossRef]
- Li, J.; Carsley, J.E.; Stoughton, T.B.; Hector, L.G.; Hu, J. Forming Limit Analysis for Two-Stage Forming of 5182-O Aluminum Sheet with Intermediate Annealing. Int. J. Plast. 2013, 45, 21–43. [Google Scholar] [CrossRef]
- Rohatgi, A.; Soulami, A.; Stephens, E.V.; Davies, R.W.; Smith, M.T. An Investigation of Enhanced Formability in AA5182-O Al during High-Rate Free-Forming at Room-Temperature: Quantification of Deformation History. J. Mater. Process. Technol. 2014, 214, 722–732. [Google Scholar] [CrossRef]
- Ju, L.; Mao, T.; Li, H. An Experimental and Numerical Study of Forming Limits of AA5182-O. Int. J. Adv. Manuf. Technol. 2015, 79, 221–228. [Google Scholar] [CrossRef]
- Maris, C.; Hassannejadasl, A.; Green, D.E.; Cheng, J.; Golovashchenko, S.F.; Gillard, A.J.; Liang, Y. Comparison of Quasi-Static and Electrohydraulic Free Forming Limits for DP600 and AA5182 Sheets. J. Mater. Process. Technol. 2016, 235, 206–219. [Google Scholar] [CrossRef]
- Reu, P. Virtual Strain Gage Size Study. Exp. Tech. 2015, 39, 1–3. [Google Scholar] [CrossRef]
- D’Errico, J. SLM—Shape Language Modeling. Available online: https://www.mathworks.com/matlabcentral/fileexchange/24443-slm-shape-language-modeling (accessed on 5 October 2019).
- Kreyszig, E. Differential Geometry; Dover Publications: New York, NY, USA, 1991; ISBN 978-0-486-66721-8. [Google Scholar]
- Min, J.; Stoughton, T.B.; Carsley, J.E.; Lin, J. A Method of Detecting the Onset of Localized Necking Based on Surface Geometry Measurements. Exp. Mech. 2017, 57, 521–535. [Google Scholar] [CrossRef]
- Bragard, A.; Baret, J.; Bonnarens, H. A simplified technique to determine FLD at the onset of necking. Rapp. Du Cent. De Rech. Mettallurgiques 1972, 33, 53–63. [Google Scholar]
- Kitting, D.; Ofenheimer, A.; Jain, M.; Rabler, G.; Pauli, H. Experimental Characterisation of Failure of Stretch-Bend Steel Sheets. In Proceedings of the Numisheet 2008, 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Interlaken, Switzerland, 3–5 September 2008. [Google Scholar]
- Noder, J.; Butcher, C. On the Influence of Tool Contact Stress on Tensile Instabilities in Plane Strain Stretching and Bending of Sheet Metals. Mech. Mater. 2023, 184, 104669. [Google Scholar] [CrossRef]
Test | Specimen Width (mm) | |||||||
---|---|---|---|---|---|---|---|---|
25.4 | 50.8 | 76.2 | 101.6 | 114.3 | 127.0 | 152.4 | 177.8 | |
Nakazima | x | x | x | x | x | x | x | x |
Marciniak | x | x | x | x | x | x | x | x |
Stretch−Bend | x |
Width (mm) | ISO12004-2:2008 | LBF | ECM—0.005 mm−1 | ECM—0.0005 mm−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ε2 | ε1 | ε2 | ε1 | ε2 | ε1 | fc | ε2 | ε1 | fc | |
25.4 | −0.1 [0] | 0.266 [0] | −0.098 [0.01] | 0.26 [0.02] | −0.103 [0] | 0.275 [0.01] | 0.9935 [0] | −0.093 [0] | 0.248 [0] | 0.9994 [0] |
50.8 | −0.081 [0] | 0.261 [0.01] | −0.078 [0.01] | 0.252 [0.02] | −0.08 [0] | 0.26 [0.01] | 0.9934 [0] | −0.077 [0] | 0.247 [0.01] | 0.9993 [0] |
76.2 | −0.057 [0] | 0.235 [0.02] | −0.054 [0] | 0.224 [0.01] | −0.055 [0] | 0.231 [0.01] | 0.9934 [0] | −0.051 [0] | 0.214 [0.02] | 0.9994 [0] |
101.6 | −0.014 [0] | 0.185 [0.01] | −0.015 [0] | 0.206 [0.02] | −0.014 [0] | 0.189 [0.01] | 0.9934 [0] | −0.013 [0] | 0.176 [0.01] | 0.9994 [0] |
114.3 | −0.005 [0] | 0.188 [0] | −0.003 [0] | 0.196 [0] | −0.003 [0] | 0.208 [0.01] | 0.9933 [0] | −0.002 [0] | 0.171 [0.02] | 0.9994 [0] |
127.0 | 0.005 [0] | 0.191 [0] | 0.006 [0] | 0.222 [0.01] | 0.008 [0] | 0.196 [0.02] | 0.9933 [0] | 0.009 [0] | 0.172 [0.01] | 0.9993 [0] |
152.4 | 0.261 [0.01] | 0.302 [0] | 0.254 [0.01] | 0.295 [0.01] | 0.238 [0.01] | 0.278 [0.01] | 0.9908 [0] | 0.2 [0.01] | 0.239 [0.01] | 0.9992 [0] |
177.8 | 0.272 [0.01] | 0.289 [0.02] | 0.256 [0.01] | 0.275 [0.02] | 0.275 [0.01] | 0.301 [0.01] | 0.9928 [0] | 0.248 [0] | 0.267 [0.01] | 0.9991 [0] |
Width (mm) | ISO12004-2:2008 | LBF | ECM—0.005 mm−1 | ECM—0.0005 mm−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ε2 | ε1 | ε2 | ε1 | ε2 | ε1 | fc | ε2 | ε1 | fc | |
25.4 | −0.094 [0.01] | 0.312 [0.04] | −0.092 [0] | 0.31 [0.02] | −0.105 [0] | 0.35 [0.01] | 0.993 [0] | −0.1 [0] | 0.334 [0.01] | 0.9993 [0] |
25.4 * | −0.094 [0.01] | 0.312 [0.04] | −0.092 [0] | 0.31 [0.02] | −0.102 [0] | 0.342 [0.01] | 0.9929 [0] | −0.091 [0] | 0.307 [0.01] | 0.9993 [0] |
50.8 | −0.034 [0.01] | 0.245 [0.03] | −0.039 [0] | 0.282 [0.01] | −0.04 [0] | 0.291 [0.01] | 0.9929 [0] | −0.037 [0] | 0.27 [0.01] | 0.9993 [0] |
76.2 | −0.002 [0] | 0.227 [0.01] | 0 [0] | 0.227 [0.01] | −0.002 [0] | 0.243 [0.02] | 0.993 [0] | 0.001 [0] | 0.211 [0.03] | 0.9993 [0] |
101.6 | 0.025 [0] | 0.206 [0] | 0.025 [0] | 0.226 [0.01] | 0.025 [0] | 0.217 [0.01] | 0.993 [0] | 0.025 [0] | 0.201 [0.02] | 0.9993 [0] |
114.3 | 0.043 [0.01] | 0.195 [0] | 0.044 [0.01] | 0.211 [0.01] | 0.044 [0.01] | 0.206 [0.02] | 0.9929 [0] | 0.044 [0.01] | 0.191 [0.02] | 0.9993 [0] |
127.0 | 0.056 [0] | 0.212 [0] | 0.058 [0] | 0.231 [0.01] | 0.058 [0] | 0.233 [0.01] | 0.9926 [0] | 0.057 [0.01] | 0.215 [0.02] | 0.9993 [0] |
152.4 | 0.19 [0.01] | 0.276 [0.02] | 0.186 [0.01] | 0.306 [0.02] | 0.182 [0.01] | 0.296 [0.01] | 0.9911 [0] | 0.165 [0] | 0.254 [0.01] | 0.9992 [0] |
177.8 | 0.234 [0.01] | 0.301 [0.02] | 0.227 [0.01] | 0.333 [0.03] | 0.234 [0.02] | 0.348 [0.03] | 0.9902 [0] | 0.214 [0.01] | 0.303 [0.02] | 0.9991 [0] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DiCecco, S.; Cheong, K.; Khameneh, F.; Deng, Z.; Worswick, M.; Butcher, C. Formability Characterization Using Curvature and Strain-Rate-Based Limit Strain Detection Methods Applied to Marciniak, Nakazima, and Stretch-Bend Tests. Metals 2024, 14, 1164. https://doi.org/10.3390/met14101164
DiCecco S, Cheong K, Khameneh F, Deng Z, Worswick M, Butcher C. Formability Characterization Using Curvature and Strain-Rate-Based Limit Strain Detection Methods Applied to Marciniak, Nakazima, and Stretch-Bend Tests. Metals. 2024; 14(10):1164. https://doi.org/10.3390/met14101164
Chicago/Turabian StyleDiCecco, Sante, Kenneth Cheong, Farinaz Khameneh, Zhi Deng, Michael Worswick, and Cliff Butcher. 2024. "Formability Characterization Using Curvature and Strain-Rate-Based Limit Strain Detection Methods Applied to Marciniak, Nakazima, and Stretch-Bend Tests" Metals 14, no. 10: 1164. https://doi.org/10.3390/met14101164
APA StyleDiCecco, S., Cheong, K., Khameneh, F., Deng, Z., Worswick, M., & Butcher, C. (2024). Formability Characterization Using Curvature and Strain-Rate-Based Limit Strain Detection Methods Applied to Marciniak, Nakazima, and Stretch-Bend Tests. Metals, 14(10), 1164. https://doi.org/10.3390/met14101164