Enhanced Cycling Stability of Amorphous MgNi-Based Alloy Electrodes through Corrosion Prevention by Incorporating Al2(SO4)3·18H2O into the Electrolyte
Abstract
:1. Introduction
2. Experimental
2.1. Electrode Materials and Electrolyte
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structural Analysis
3.2. Electrochemical Performances
3.3. The Mechanism for Improved Electrochemical Performances
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.F.; Pan, H.G.; Gao, M.X.; Wang, Q.D. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 2011, 21, 4743–4755. [Google Scholar] [CrossRef]
- Tliha, M.; Khaldi, C.; Boussami, S.; Fenineche, N.; El-Kedim, O.; Mathlouthi, H.; Lamloumi, J. Kinetic and thermodynamic studies of hydrogen storage alloys as negative electrode materials for Ni/MH batteries: A review. J. Solid State Electrochem. 2014, 18, 577–593. [Google Scholar] [CrossRef]
- Ouyang, L.Z.; Huang, J.L.; Wang, H.; Liu, J.W.; Zhu, M. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review. Mater. Chem. Phys. 2017, 200, 164–178. [Google Scholar] [CrossRef]
- Ayyanusamy, P.; Tharani, D.S.; Alphonse, R.; Minakshi, M.; Sivasubramanian, R. Synthesis of amorphous nickel-cobalt hydroxides for Ni-Zn rechargeable aqueous battery. Chem. Eur. J. 2024, e202402325. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, S.; Tharani, D.S.; Manickam, M.; Sivasubramanian, R. A sol-gel derived LaCoO3 perovskite as an electrocatalyst for Al-air batteries. Dalton Trans. 2024, 53, 3713–3721. [Google Scholar] [CrossRef] [PubMed]
- Orimo, S.; Fujii, H. Materials science of Mg-Ni-based new hydrides. Appl. Phys. A 2001, 72, 167. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121. [Google Scholar] [CrossRef]
- Jain, I.P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133. [Google Scholar] [CrossRef]
- Lei, Y.Q.; Wu, Y.M.; Yang, Q.M.; Wu, J.; Wang, Q.D. Electrochemical behavior of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys. Z. Phys. Chem. 1994, 183, 379. [Google Scholar] [CrossRef]
- Kohno, T.; Tsuruta, S.; Kanda, M. The hydrogen storage properties of new Mg2Ni alloy. J. Electrochem. Soc. 1996, 143, L198. [Google Scholar] [CrossRef]
- Kohno, T.; Yamamoto, M.; Kanda, M. Electrochemical properties of mechanically ground Mg Ni alloy. J. Alloys Compd. 1999, 293–295, 643–647. [Google Scholar] [CrossRef]
- Iwakura, C.; Inoue, H.; Zhang, S.G.; Nohara, S. Hydriding and electrochemical characteristics of a homogeneous amorphous Mg2Ni-Ni composite. J. Alloys Compd. 1998, 270, 142. [Google Scholar] [CrossRef]
- Nohara, S.; Fujita, N.; Zhang, S.G.; Inoue, H.; Iwakura, C. Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni. J. Alloys Compd. 1998, 267, 76. [Google Scholar] [CrossRef]
- Li, M.H.; Zhu, Y.F.; Yang, C.; Zhang, J.G.; Chen, W.; Li, L.Q. Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel. Int. J. Hydrogen Energy 2015, 40, 13949–13956. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ren, H.P.; Li, B.W.; Guo, S.H.; Pang, Z.G.; Wang, X.L. Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg20Ni10-xCox (x = 0–4) alloys prepared by melt spinning. Int. J. Hydrogen Energy 2009, 34, 8144–8151. [Google Scholar] [CrossRef]
- Ruggeri, S.; Roue, L.; Huot, J.; Schulz, R.; Aymard, L.; Tarascon, J.M. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries. J. Power Sources 2002, 112, 547–556. [Google Scholar] [CrossRef]
- Khorkounov, B.; Gebert, A.; Mickel, C.; Schultz, L. Improving the performance of hydrogen storage electrodes based on mechanically alloyed Mg61Ni30Y9. J. Alloys Compd. 2008, 458, 479–486. [Google Scholar] [CrossRef]
- Han, S.C.; Lee, P.S.; Lee, J.Y.; Züttel, A.; Schlapbach, L. Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling. J. Alloys Compd. 2000, 306, 219–226. [Google Scholar] [CrossRef]
- Ye, H.; Lei, Y.Q.; Chen, L.S.; Zhang, H. Electrochemical characteristics of amorphous Mg0.9M0.1Ni (M = Ni, Ti, Zr, Co and Si) ternary alloys prepared by mechanical alloying. J. Alloys Compd. 2000, 311, 194–199. [Google Scholar] [CrossRef]
- Wang, M.H.; Zhang, Y.; Zhang, L.Z.; Sun, L.X.; Tan, Z.C.; Xu, F.; Yuan, H.T.; Zhang, T. The effects of partial substitution of Cr for Ni on the electrochemical properties of Mg1.75Al0.25Ni1−xCrx (0 ≤ x ≤ 0.3) electrode alloys. J. Power Sources 2006, 159, 159–162. [Google Scholar] [CrossRef]
- Anik, M.; Özdemir, G.; Kücükdeveci, N.; Baksan, B.; Al, E.O. Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy. Int. J. Hydrogen Energy 2011, 36, 1568–1577. [Google Scholar] [CrossRef]
- Tian, Q.F.; Zhang, Y.; Sun, L.X.; Xu, F.; Tan, Z.C.; Yuan, H.T.; Zhang, T. Effects of Pd substitution on the electrochemical properties of Mg0.9-xTi0.1PdxNi (x = 0.04-0.1) hydrogen storage alloys. J. Power Sources 2006, 158, 1463–1471. [Google Scholar] [CrossRef]
- Rousselot, S.; Guay, D.; Roué, L. Comparative study on the structure and electrochemical hydriding properties of MgTi, Mg0.5Ni0.5Ti and MgTi0.5Ni0.5 alloys prepared by high energy ball milling. J. Power Sources 2011, 196, 1561–1568. [Google Scholar] [CrossRef]
- Nikkuni, F.R.; Santos, S.F.; Ticianelli, E.A. Microstructures and electrochemical properties of Mg49Ti6Ni(45-x)Mx (M = Pd and Pt) alloy electrodes. Int. J. Energy Res. 2013, 37, 706–712. [Google Scholar] [CrossRef]
- Delchev, P.; Himitliiska, T.; Spassov, T. Microstructure and hydriding properties of ball-milled Mg–10at.% MmNi5 (Mm = La, Ce-rich mischmetal) composites. J. Alloys Compd. 2006, 417, 85. [Google Scholar] [CrossRef]
- He, G.; Jiao, L.F.; Yuan, H.T.; Zhang, Y.Y.; Wang, Y.J. Preparation and electrochemical properties of MgNi-MB (M = Co, Ti) composite alloys. J. Alloys Compd. 2008, 450, 375. [Google Scholar] [CrossRef]
- Gu, H.; Zhu, Y.F.; Li, L.Q. Hydrogen storage properties of Mg–30 wt.% LaNi5 composite prepared by hydriding combustion synthesis followed by mechanical milling (HCS+MM). Int. J. Hydrogen Energy 2009, 34, 1405. [Google Scholar] [CrossRef]
- Huang, H.X.; Huang, K.L.; Chen, D.Y.; Liu, S.Q.; Zhuang, S.X. The electrochemical properties of MgNi-xwt% TiNi0.56Co0.44 (x = 0, 5, 10, 30, 50) composite alloys. J. Mater. Sci. 2010, 45, 1123. [Google Scholar] [CrossRef]
- Iwakura, C.; Nohara, S.; Inoue, H.; Fukumoto, Y. Surface modification of MgNi alloy with graphite by ball-milling for use in nickel-metal hydride batteries. Chem. Commun. 1996, 1, 1831–1832. [Google Scholar] [CrossRef]
- Abe, T.; Inoue, S.; Mu, D.B.; Hatano, Y.J.; Watanabe, K. Electrochemical studies of the effect of surface modification of amorphous MgNi electrodes by carbon or Ni. J. Alloys Compd. 2003, 349, 279–283. [Google Scholar] [CrossRef]
- Wu, D.C.; Li, L.; Liang, G.Y.; Guo, Y.L.; Wu, H.B. Improved electrochemical properties of amorphous Mg65Ni27La8 electrodes: Surface modification using graphite. J. Power Sources 2009, 189, 1251–1255. [Google Scholar] [CrossRef]
- Rongeat, C.; Grosjean, M.H.; Ruggeri, S.; Dehmas, M.; Bourlot, S.; Marcotte, S.; Roué, L. Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries. J. Power Sources 2006, 158, 747–753. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, C.R.; Choi, J.W.; Kang, S.G. Effects of F-treatment on degradation of Mg2Ni electrode fabricated by mechanical alloying. J. Power Sources 2002, 104, 201–207. [Google Scholar] [CrossRef]
- Yan, S.L.; Ng, K.Y.S.; Young, K.-H. Effects of salt additives to the KOH electrolyte used in Ni/MH batteries. Batteries 2015, 1, 54–73. [Google Scholar] [CrossRef]
- Yan, S.L.; Nei, J.; Li, P.F.; Young, K.H.; Ng, K.Y.S. Effects of Cs2CO3 additive in KOH electrolyte used in Ni/MH batteries. Batteries 2017, 3, 41. [Google Scholar] [CrossRef]
- Huang, J.L.; Ouyang, L.Z.; Wang, H.; Liu, J.W.; Zhu, M.; Fang, F.; Sun, D.L. Hydrogenation and crystallization of amorphous phase: A new mechanism for the electrochemical capacity and its decay in milled Mg-Ni alloys. Electrochim. Acta 2019, 305, 145–154. [Google Scholar] [CrossRef]
- Huang, J.L.; Wang, H.; Ouyang, L.Z.; Liu, J.W.; Zhu, M. Reducing the electrochemical capacity decay of milled Mg–Ni alloys: The role of stabilizing amorphous phase by Ti-substitution. J. Power Sources 2019, 438, 226984. [Google Scholar] [CrossRef]
- Yahyaoui, R.; Jimenez, P.E.S.; Maqueda, L.A.P.; Nahdi, K.; Luque, J.M.C. Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O). Thermochim. Acta 2018, 667, 177–184. [Google Scholar] [CrossRef]
Alloys | Maximum Discharge Capacity (mAh/g) | Capacity Retention | Ref. |
---|---|---|---|
Mg0.7Ti0.3Ni1.0 | 325 | S20 = 92% | [18] |
Mg0.9Co0.1Ni1.0 | 352.5 | S22 = ~57% | [19] |
Mg0.9Si0.1Ni1.0 | 413.2 | S31 = ~48% | [19] |
Mg1.75Al0.25Ni0.9Cr0.1 | 166 | S10 = 82% | [20] |
Mg0.9Ti0.1Ni1.0 | 502 | S20 = 60% | [21] |
Mg0.8Zr0.2Ni1.0 | 438 | S20 = 56% | [21] |
Mg0.9Al0.1Ni1.0 | 404 | S20 = 58% | [21] |
Mg0.8Ti0.1Pd0.1Ni1.0 | 326.5 | S20 = 74.2% | [22] |
Mg1.0Ti0.5Ni0.5 | 536 | S15 = ~80% | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Cai, Y.; Huang, J.; Zhao, S.; Cheng, D. Enhanced Cycling Stability of Amorphous MgNi-Based Alloy Electrodes through Corrosion Prevention by Incorporating Al2(SO4)3·18H2O into the Electrolyte. Metals 2024, 14, 1142. https://doi.org/10.3390/met14101142
Li J, Cai Y, Huang J, Zhao S, Cheng D. Enhanced Cycling Stability of Amorphous MgNi-Based Alloy Electrodes through Corrosion Prevention by Incorporating Al2(SO4)3·18H2O into the Electrolyte. Metals. 2024; 14(10):1142. https://doi.org/10.3390/met14101142
Chicago/Turabian StyleLi, Jiabao, Yang Cai, Jianling Huang, Shiqian Zhao, and Deliang Cheng. 2024. "Enhanced Cycling Stability of Amorphous MgNi-Based Alloy Electrodes through Corrosion Prevention by Incorporating Al2(SO4)3·18H2O into the Electrolyte" Metals 14, no. 10: 1142. https://doi.org/10.3390/met14101142
APA StyleLi, J., Cai, Y., Huang, J., Zhao, S., & Cheng, D. (2024). Enhanced Cycling Stability of Amorphous MgNi-Based Alloy Electrodes through Corrosion Prevention by Incorporating Al2(SO4)3·18H2O into the Electrolyte. Metals, 14(10), 1142. https://doi.org/10.3390/met14101142