Strengthening Mechanisms of Rail Steel under Compression
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bataev, A.; Bataev, I.; Nikulina, A.; Popelyukh, A.; Balagansky, I.; Plotnikova, N. Structural transformations of carbon ferritic-pearlitic steels under conditions of high-speed loading. Obrab. Metallov—Metal Work. Mater. Sci. 2019, 21, 115–128. [Google Scholar] [CrossRef]
- Klevtsov, G.V.; Valiev, R.Z.; Klevtsova, N.A.; Zaripov, N.G.; Karavaeva, M.V. Strength and fracture mechanisms of nanostructured metallic materials under single kinds of loading. MiTOM 2017, 9, 54–62. [Google Scholar] [CrossRef]
- Yang, C.; Song, N.; Xiaozhou, L.; Min, S.; Yuntian, Z. Structural evolutions of metallic materials processed by severe plastic deformation. Mater. Sci. Eng. R Rep. 2018, 133, 1–59. [Google Scholar] [CrossRef]
- Gubicza, J. Lattice defects and their influence on the mechanical properties of bulk materials processed by severe plastic deformation. Mater. Trans. 2019, 60, 1230–1242. [Google Scholar] [CrossRef]
- Mazilkin, A.; Straumal, B.; Kilmametov, A.; Straumal, P.; Baretzky, B. Phase transformations induced by severe plastic deformation. Mater. Trans. 2019, 60, 1489–1499. [Google Scholar] [CrossRef]
- Blank, V.D.; Popov, M.Y.; Kulnitskiy, B.A. The Effect of severe plastic deformations on phase transitions and structure of solids. Mater. Trans. 2019, 60, 1500–1505. [Google Scholar] [CrossRef]
- Bubnov, V.A.; Korotovskikh, V.K.; Kostenko, S.G. Effect of the degree of plastic deformation on hardness of austenitic steel. Chem. Pet. Eng. 2022, 57, 1038–1042. [Google Scholar] [CrossRef]
- Wang, Y.; Tomota, Y.; Harjo, S.; Gong, W.; Ohmuraa, T. In-situ neutron diffraction during tension-compression cyclic deformation of a pearlite steel. Mater. Sci. Eng. A 2016, 676, 522–530. [Google Scholar] [CrossRef]
- Pan, R.; Ren, R.; Chen, C.; Zhao, X. Formation of nanocrystalline structure in pearlitic steels by dry sliding wear. Mater. Charact. 2017, 132, 397–404. [Google Scholar] [CrossRef]
- Steenbergen, M. Rolling contact fatigue: Spalling versus transverse fracture of rails. Wear 2017, 380–381, 96–105. [Google Scholar] [CrossRef]
- Vinogradov, A.; Estrin, Y. Analytical and numerical approaches to modelling severe plastic deformation. Prog. Mater. Sci. 2018, 95, 172–242. [Google Scholar] [CrossRef]
- Nikas, D.; Zhang, X.; Ahlström, J. Evaluation of local strength via microstructural quantification in a pearlitic rail steel deformed by simultaneous compression and torsion. Mater. Sci. Eng. A 2018, 737, 341–347. [Google Scholar] [CrossRef]
- Skrypnyk, R.; Ekh, M.; Nielsen, J.C.O.; Pålsson, B.A. Prediction of plastic deformation and wear in railway crossings—Comparing the performance of two rail steel grades. Wear 2019, 428–429, 302–314. [Google Scholar] [CrossRef]
- Rong, K.; Xiao, Y.; Shen, M.; Zhao, H.; Wang, W.; Xiong, G. Influence of ambient humidity on the adhesion and damage behavior of wheel–rail interface under hot weather condition. Wear 2021, 486–487, 204091. [Google Scholar] [CrossRef]
- Li, X.C.; Ding, H.H.; Wang, W.J.; Guo, J.; Liu, Q.Y.; Zhou, Z.R. Investigation on the relationship between microstructure and wear characteristic of rail materials. Tribol. Int. 2021, 163, 107152. [Google Scholar] [CrossRef]
- Miranda, R.S.; Rezende, A.B.; Fonseca, S.T.; Sinatora, A.; Mei, P.R. Fatigue and wear behavior of pearlitic and bainitic microstructures with the same chemical composition and hardness using twin-disc tests. Wear 2022, 494–495, 204253. [Google Scholar] [CrossRef]
- Pereira, H.B.; Dias Alves, L.H.; Rezende, A.B.; Mei, P.R.; Goldenstein, H. Influence of the microstructure on the rolling contact fatigue of rail steel: Spheroidized pearlite and fully pearlitic microstructure analysis. Wear 2022, 498–499, 204299. [Google Scholar] [CrossRef]
- Pan, R.; Yu, C.; Lan, H.; Shiju, E.; Ren, R. Investigation into the microstructure evolution and damage on rail at curved tracks. Wear 2022, 504–505, 204420. [Google Scholar] [CrossRef]
- Zhang, S.; Spiryagin, M.; Lin, Q.; Ding, H.; Wu, Q.; Guo, J.; Liu, Q.; Wang, W. Study on wear and rolling contact fatigue behaviours of defective rail under different slip ratio and contact stress conditions. Tribol. Int. 2022, 169, 107491. [Google Scholar] [CrossRef]
- Yildirim, C.; Jessop, C.; Ahlström, J.; Detlefs, C.; Zhang, Y. 3D mapping of orientation variation and local residual stress within individual grains of pearlitic steel using synchrotron dark field X-ray microscopy. Scr. Mater. 2021, 197, 113783. [Google Scholar] [CrossRef]
- Rybin, V.V. Large plastic deformations and destruction of metals. Metallurgy 1986, 12, 224. [Google Scholar]
- Hirsch, P.; Hovey, A.; Nicholson, P.; Pasley, D.; Whelan, M. Electron Microscopy of Thin Crystals; Mir: Moscow, Russia, 1968; p. 574. [Google Scholar]
- Carter, C.B.; Williams, D.B. Transmission Electron Microscopy; Springer International Publishing: Berlin, Germany, 2016; p. 518. [Google Scholar]
- Ivanov, Y.A.; Gromov, V.E.; Yuriev, A.A.; Kormyshev, V.E.; Rubannikova, Y.A.; Semin, A.P. Deformation strengthening mechanisms of rails in extremely long-term operation. J. Mater. Res. Technol. 2021, 11, 710–718. [Google Scholar] [CrossRef]
- Yuriev, A.A.; Ivanov, Y.F.; Gromov, V.E.; Rubannikova, Y.A.; Starostenkov, M.D.; Tabakov, P.Y. Structure and Properties of Lengthy Rails after Extreme Long-Term Operation; Materials Research Forum LLC: Millersville, PA, USA, 2021; p. 190. [Google Scholar]
- Ivanov, Y.F.; Glezer, A.M.; Kuznetsov, R.V.; Gromov, V.E.; Shliarova, Y.A.; Semin, A.P.; Sundeev, R.V. Fine structure formation in rails under ultra long-term operation. Mater. Lett. 2022, 309, 131378. [Google Scholar] [CrossRef]
- Ivanov, Y.F.; Gromov, V.E.; Aksenova, K.V.; Kuznetsov, R.V.; Kormyshev, V.E.; Vashchuk, E.S. Evolution of the structure of rail steel under compression. Deform. Destr. Mater. 2022, 8, 9–14. [Google Scholar] [CrossRef]
- Saltykov, S.A. Stereometric Metallography; Defense Technical Information Center: Fort Belvoir, VA, USA, 1976; Volume 3, p. 376. [Google Scholar]
- Chernyavsky, V.S. Stereology in Metal Science; Metallurgy: Moscow, Russia, 1977; 280p. [Google Scholar]
- Goldstein, M.I.; Farber, B.M. Dispersion Hardening of Stell; Metallurgy: Moscow, Russia, 1979; p. 208. [Google Scholar]
- Koneva, N.A.; Kiseleva, S.F.; Popova, N.A. Evolution of Structure and Internal Stress Fields. Austenitic Steel; Laplambert Academic Publishing: Saarbrucken, Germany, 2017; p. 148. [Google Scholar]
- Yao, M.J.; Welsch, E.; Ponge, D.; Haghighat, S.M.H.; Sandlöbes, S.; Choi, P.; Herbig, M.; Bleskov, I.; Hickel, T.; Lipinska-Chwalek, M.; et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel. Acta Mater. 2017, 140, 258–273. [Google Scholar] [CrossRef]
- Tushinsky, L.I.; Bataev, A.A.; Tikhomirova, L.B. Pearlite Structure and Structural Strength of Steel; VO “Science”; Siberian Publishing Company: Novosibirsk, Russia, 1993; 280p. [Google Scholar]
- Popov, V.E.; Koneva, N.A.; Tereshko, I.V. Deformation Hardening of Ordered Alloys; Metallurgy: Moscow, Russia, 1979; p. 256. [Google Scholar]
- Kozlov, E.V.; Koneva, N.A. The nature of hardening of metal materials. Izv. Vuzov Phys. 2002, 45, 52–71. [Google Scholar]
C | Mn | Si | Cr | P | S | Ni | Cu | Ti | Mo | V | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
0.73 | 0.75 | 0.58 | 0.42 | 0.012 | 0.007 | 0.07 | 0.13 | 0.003 | 0.006 | 0.04 | 0.003 |
Structure Parameters | Pearlite | Ferrite | ||||
---|---|---|---|---|---|---|
Non-Fractured | Fractured | Fragmented | Non-Fragmented | Fragmented | ||
ε = 15% | ||||||
Vol. fraction | 70% | 24% | 3% | 1% | 2% | |
Transverse size of the α-phase interlayer, nm | 160 | 120 | 120 | |||
Fragment size, nm | – | – | 120 × 400 | – | 400 | |
Fe3C | size, nm | d = 16 | 12 × 280 | 12 × 160 | ||
vol. fraction | 12% | 8.7% | 1.5% | |||
Fraction of carbon | 0.8% | 0.6% | 0.11% | |||
ρα × 10−10, cm−2 | 1.91 | 2.06 | 2.08 | 2.21 | ~0 | |
ρ± × 10−10, cm−2 | 1.54 | 1.96 | 2.08 | 2.21 | ||
χ = χpl + χel, cm−1 | 385 | 490 | 650 = 520pl + 30el | 1090 = 550pl + 140el | 745 = 0pl + 745el | |
ε = 30% | ||||||
Vol. fraction | 65% | 20% | 12% | 0 | 3% | |
Transverse size of the α-phase interlayer, nm | 160 | 120 | 120 | |||
Fragment size, nm | – | – | 120 × 200 | – | 200 | |
Fe3C | size, nm | d = 18 | 16 × 280 | 12 × 160 | ||
vol. fraction | 12% | 4.8% | 0.92% | |||
Fraction of carbon | 0.8% | 0.34% | 0.07% | |||
ρα × 10−10, cm−2 | 2.18 | 2.50 | 1.59 | ~0 | ||
ρ± × 10−10, cm−2 | 1.76 | 2.26 | 1.59 | |||
χ = χpl + χel, cm−1 | 440 | 565 | 435 = 395pl + 40el | 745 = 0pl + 745el | ||
ε = 50% | ||||||
Vol. fraction | 0 | 60% | 40% | 0 | 0 | |
Fragment size, nm | 200 | |||||
Fe3C in the α-phase (inside fr.) | size, nm | d = 12; r = 16 | d = 16; r = 20 | |||
vol. fraction | 1.8% | 2.7% | ||||
Fraction of carbon in α-phase | 0.12% | 0.19% | ||||
Fe3C in the layers of Fe3C (on border of fr.) | size, nm | d = 14; r = 20 | d = 16; r = 30 | |||
vol. fraction | 2.7% | 1.2% | ||||
Fraction of carbon | 0.19% | 0.09% | ||||
ρα × 10−10, cm−2 | 2.25 | 0 | ||||
ρ± × 10−10, cm−2 | 2.25 | |||||
χ = χpl + χel, cm−1 | 575 = 560pl + 15el | 55 = 0pl + 55el |
Average Structure Parameters | ε = 15% | ε = 30% | ε = 50% |
---|---|---|---|
ρα × 10−10, cm−2 | 1.92 | 2.11 | 1.35 |
ρ± × 10−10, cm−2 | 1.63 | 1.79 | 1.35 |
χ = χpl + χel, cm−1 | 425 = 410pl + 15el | 470 = 445pl + 25el | 365 = 335pl + 30el |
Contributions | Pearlite | Ferrite | In the Material | |||
---|---|---|---|---|---|---|
Non-Fractured | Fractured | Fragmented | Non-Fragment | Fragmented | ||
ε = 15% | ||||||
Vol. fraction | 70% | 24% | 3% | 1% | 2% | 100% |
σh, MPa | 275 | 285 | 290 | 295 | 0 | 273 |
σpl, MPa | 250 | 280 | 290 | 295 | 0 | 254 |
σel, MPa | 0 | 0 | 40 | 190 | 1010 | 20 |
σs, MPa | – | – | 550 | – | 350 | 25 |
σ0, MPa | 35 | 35 | 35 | 35 | 35 | 35 |
σss, MPa | 80 | 80 | 260 | 1400 | 1400 | 130 |
σp, MPa | 570 | 250 | 0 | 460 | ||
σor, MPa | 135 | 0 | 0 | 5 | ||
ε = 30% | ||||||
Vol. fraction | 65% | 20% | 12% | 0 | 3% | 100% |
σh, MPa | 295 | 315 | 250 | 0 | 285 | |
σpl, MPa | 265 | 300 | 250 | 0 | 262 | |
σel, MPa | 0 | 0 | 55 | 1010 | 35 | |
σs, MPa | – | – | 835 | 750 | 125 | |
σ0, MPa | 35 | 35 | 35 | 35 | 35 | |
σss, MPa | 80 | 315 | 190 | 1400 | 180 | |
σp, MPa | 570 | 250 | 0 | 420 | ||
σor, MPa | 135 | 15 | ||||
ε = 50% | ||||||
Vol. fraction | 0 | 60% | 40% | 0 | 0 | 100% |
σh, MPa | 300 | 0 | 180 | |||
σpl, MPa | 300 | 0 | 180 | |||
σel, MPa | 20 | 75 | 95 | |||
σs, MPa | – | 750 | 300 | |||
σ0, MPa | 35 | 35 | 35 | |||
σss, MPa | 315 | 300 | 310 | |||
σp, MPa | 250 | 0 | 150 | |||
σor, MPa | 1120 | 645 | 930 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, Y.; Porfiriev, M.; Gromov, V.; Popova, N.; Shliarova, Y. Strengthening Mechanisms of Rail Steel under Compression. Metals 2024, 14, 9. https://doi.org/10.3390/met14010009
Ivanov Y, Porfiriev M, Gromov V, Popova N, Shliarova Y. Strengthening Mechanisms of Rail Steel under Compression. Metals. 2024; 14(1):9. https://doi.org/10.3390/met14010009
Chicago/Turabian StyleIvanov, Yurii, Mikhail Porfiriev, Victor Gromov, Natalia Popova, and Yulia Shliarova. 2024. "Strengthening Mechanisms of Rail Steel under Compression" Metals 14, no. 1: 9. https://doi.org/10.3390/met14010009
APA StyleIvanov, Y., Porfiriev, M., Gromov, V., Popova, N., & Shliarova, Y. (2024). Strengthening Mechanisms of Rail Steel under Compression. Metals, 14(1), 9. https://doi.org/10.3390/met14010009