Effect of Temperature on the Morphology and Corrosion Resistance of Modified Boron Nitride Nanosheets Incorporated into Steel Phosphate Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Zinc Phosphating Treatment Procedure
2.3. Synthesis of BN@PDA
2.4. Surface Characterization
2.5. Corrosion Performance Evaluation
3. Results and Discussion
3.1. Characterization of PDA@BNs Nanosheets
3.2. Morphology of Phosphate Coating
3.3. Formation Mechanism
3.4. Phosphate Coating Weight
3.5. Elemental Dispersive Spectroscopy Analysis (EDS) of Phosphate Coatings at Different Temperatures
3.6. Effect of Temperature on Corrosion Performance
3.7. Electrochemical Impedance Spectroscopy (EIS)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tarka, K.; Jaako, A.; Persson, D.; Mattsson, H.; Johansson, L.-G. Corrosion Propagation Under Paint Films on Galvanized Steel: A Comparison of Phosphating and Thin Film Corrosion Pretreatment Technologies. In Sustainable Automotive Technologies 2014; Springer International Publishing: Cham, Switzerland, 2015; pp. 163–170. [Google Scholar] [CrossRef]
- Amirudin, A.; Thierry, D. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings. Prog. Org. Coat. 1996, 28, 59–75. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, D.; Li, X.; Jiang, S.; Zhang, Q. Current status, opportunities and challenges in chemical conversion coatings for zinc. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 221–236. [Google Scholar] [CrossRef]
- Simescu, F.; Idrissi, H. Corrosion behaviour in alkaline medium of zinc phosphate coated steel obtained by cathodic electrochemical treatment. Corros. Sci. 2009, 51, 833–840. [Google Scholar] [CrossRef]
- Abdalla, K.; Azmi, R.; Azizan, A. The Influence of Deposition Temperature on the Morphology and Corrosion Resistance of Zinc Phosphate Coating on Mild Steel. Adv. Mater. Res. 2012, 626, 183–189. [Google Scholar] [CrossRef]
- Abbasi, M.; Attar, M.M. Effect of vanadium additive and phosphating time on anticorrosion, morphology and surface properties of ambient temperature zinc phosphate conversion coatings on mild steel. J. Coat. Technol. Res. 2017, 14, 1435–1445. [Google Scholar] [CrossRef]
- Li, R.; Yu, Q.; Yang, C.; Chen, H.; Xie, G.; Guo, J. Innovative cleaner production for steel phosphorization using Zn–Mn phosphating solution. J. Clean. Prod. 2010, 18, 1040–1044. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Wang, H.; Xie, Y.; Sheng, X.; Zhong, L.; Zhang, X. Accelerated formation of zinc phosphate coatings with enhanced corrosion resistance on carbon steel by introducing α-zirconium phosphate. J. Alloys Compd. 2020, 831, 154906. [Google Scholar] [CrossRef]
- Fouladi, M.; Amadeh, A. Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating. Electrochim. Acta 2013, 106, 1–12. [Google Scholar] [CrossRef]
- Muhammad, M.; Hu, S.; Ma, R.; Du, A.; Wang, M.; Fan, Y.; Zhao, X.; Yang, H.; Li, C.C.; Cao, X. Enhancing the corrosion resistance of Q235 mild steel by incorporating poly(dopamine) modified h-BN nanosheets on zinc phosphate-silane coating. Surf. Coat. Technol. 2020, 390, 125682. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.S.; Jegannathan, S.; Ravichandran, K. Corrosion resistance of phosphate coatings obtained by cathodic electrochemical treatment: Role of anode–graphite versus steel. Prog. Org. Coat. 2006, 55, 355–362. [Google Scholar] [CrossRef]
- Asadi, V.; Danaee, I.; Eskandari, H. The Effect of Immersion Time and Immersion Temperature on the Corrosion Behavior of Zinc Phosphate Conversion Coatings on Carbon Steel. Mater. Res. 2015, 18, 706–713. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D. Preparation of Zn-Ca Phosphate Coating in Presence of PTFE on 45 Steel and its Corrosion Properties in Simulated Seawater. Int. J. Electrochem. Sci. 2022, 17, 220947. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, M.; Xie, D.; Zhong, L.; Zhang, X. A fast, low temperature zinc phosphate coating on steel accelerated by graphene oxide. Corros. Sci. 2017, 128, 1–8. [Google Scholar] [CrossRef]
- Shibli, S.M.A.; Chacko, F. Development of nano TiO2-incorporated phosphate coatings on hot dip zinc surface for good paintability and corrosion resistance. Appl. Surf. Sci. 2011, 257, 3111–3117. [Google Scholar] [CrossRef]
- Arthanareeswari, M.; Kamaraj, P.; Tamilselvi, M.; Devikala, S. A low temperature nano TiO 2 incorporated nano zinc phosphate coating on mild steel with enhanced corrosion resistance. Mater. Today Proc. 2018, 5, 9012–9025. [Google Scholar] [CrossRef]
- Huang, H.; Wang, H.; Xie, Y.; Dong, D.; Jiang, X.; Zhang, X. Incorporation of boron nitride nanosheets in zinc phosphate coatings on mild steel to enhance corrosion resistance. Surf. Coat. Technol. 2019, 374, 935–943. [Google Scholar] [CrossRef]
- Hu, S.; Muhammad, M.; Wang, M.; Ma, R.; Du, A.; Fan, Y.; Cao, X.; Zhao, X. Corrosion resistance performance of nano-MoS2-containing zinc phosphate coating on Q235 steel. Mater. Lett. 2020, 265, 127256. [Google Scholar] [CrossRef]
- Di Giampaolo, A.R.; Medina, M.; Reyes, R.; Velez, M. Zinc phosphate interlayer for sol-gel-derived aluminosilicate coating on AISI-1010 carbon steel. Surf. Coat. Technol. 1997, 89, 31–37. [Google Scholar] [CrossRef]
- Ding, X.; Xue, L.; Wang, X.; Ding, K.; Cui, S.; Sun, Y.; Li, M. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd–Fe–B permanent magnets. J. Magn. Magn. Mater. 2016, 416, 247–255. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, O.P.; Gusain, R.; Mungse, H.P.; Kukrety, A.; Kumar, N.; Sugimura, H.; Khatri, O.P. Alkyl-Chain-Grafted Hexagonal Boron Nitride Nanoplatelets as Oil-Dispersible Additives for Friction and Wear Reduction. ACS Appl. Mater. Interfaces 2015, 7, 3708–3716. [Google Scholar] [CrossRef]
- Wang, X.; Hu, W.; Hu, Y. Polydopamine-Bridged Synthesis of Ternary h-BN@PDA@TiO2 as Nanoenhancers for Thermal Conductivity and Flame Retardant of Polyvinyl Alcohol. Front. Chem. 2020, 8, 587474. [Google Scholar] [CrossRef]
- Yue, Y.-Y.; Liu, Z.-X.; Wan, T.-T.; Wang, P.-C. Effect of phosphate–silane pretreatment on the corrosion resistance and adhesive-bonded performance of the AZ31 magnesium alloys. Prog. Org. Coat. 2013, 76, 835–843. [Google Scholar] [CrossRef]
- Sinha, P.K.; Feser, R. Phosphate coating on steel surfaces by an electrochemical method. Surf. Coat. Technol. 2002, 161, 158–168. [Google Scholar] [CrossRef]
- Muhammad, M.; Ma, R.; Du, A.; Fan, Y.; Zhao, X.; Cao, X. Preparation and Modification of Polydopamine Boron Nitride—Titanium Dioxide Nanohybrid Particles Incorporated into Zinc Phosphating Bath to Enhance Corrosion Performance of Zinc Phosphate-Silane Coated Q235 Steel. Materials 2023, 16, 3835. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Yin, J. Boron nitride nanosheets: Large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J. Mater. Chem. 2011, 21, 11371. [Google Scholar] [CrossRef]
- Cui, M.; Ren, S.; Qin, S.; Xue, Q.; Zhao, H.; Wang, L. Processable poly(2-butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating. Corros. Sci. 2018, 131, 187–198. [Google Scholar] [CrossRef]
- Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Adv. Mater. 2009, 21, 2889–2893. [Google Scholar] [CrossRef]
- Li, G.; Xing, R.; Geng, P.; Liu, Z.; He, L.; Wang, N.; Zhang, Q.; Qu, X. Surface modification of boron nitride via poly (dopamine) coating and preparation of acrylonitrile-butadiene-styrene copolymer/boron nitride composites with enhanced thermal conductivity. Polym. Adv. Technol. 2018, 29, 337–346. [Google Scholar] [CrossRef]
- Xie, B.-H.; Huang, X.; Zhang, G.-J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 2013, 85, 98–103. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.S.; Subbaiyan, M. Overheating—Its decisive role in phosphating. Met. Finish. 1995, 93, 30–31. [Google Scholar] [CrossRef]
- Narayanan, T.S.N.S. Surface pretreatment by phosphate conversion coatings—A review. Rev. Adv. Mater. Sci. 2005, 9, 130–177. [Google Scholar]
- Liu, B.; Zhang, X.; Xiao, G.; Lu, Y. Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review. Mater. Sci. Eng. C 2015, 47, 97–104. [Google Scholar] [CrossRef]
- Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel. Appl. Surf. Sci. 2015, 327, 218–225. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Seifzadeh, D.; Harrafi, H. Phosphatation of iron powder metallurgical samples for corrosion protection. J. Iran. Chem. Soc. 2007, 4, 72–77. [Google Scholar] [CrossRef]
- Jegannathan, S.; Narayanan, T.S.N.S.; Ravichandran, K.; Rajeswari, S. Evaluation of the corrosion resistance of phosphate coatings obtained by anodic electrochemical treatment. Prog. Org. Coat. 2006, 57, 392–399. [Google Scholar] [CrossRef]
Sample | ECorr (V) | iCorr (A/cm2) | βa (mV/dec−1) | −βc (mV/dec−1) | Corrosion Rate | Rp (KΩ·cm2) |
---|---|---|---|---|---|---|
(Mil/Year) | ||||||
Pure 25 (25 °C) | −0.651 | 5.78 × 10−6 | 10.916 | 4.347 | 2.65 | 4931 |
Pure 45 (45 °C) | −0.596 | 1.65 × 10−5 | 10.778 | 3.822 | 7.59 | 1801 |
Pure 55 (55 °C) | −0.630 | 7.19 × 10−6 | 8.776 | 3.989 | 3.30 | 4737 |
S-25 (25 °C) | −0.528 | 8.23 × 10−6 | 12.547 | 3.109 | 3.76 | 3374 |
S-45 (45 °C) | −0.454 | 5.84 × 10−8 | 12.324 | 4.907 | 26.7 | 4.315 × 105 |
S-55 (55 °C) | −0.434 | 2.32 × 10−7 | 11.659 | 5.382 | 10.6 | 1.096 × 105 |
Sample | Rs (Ω·cm2) | CPEc | n | Rc (Ω·cm2) | CPEdl | n | Rct (Ω·cm2) |
---|---|---|---|---|---|---|---|
Yo (Ω−1·cm−2·sn) | Yo (Ω−1·cm−2·sn) | ||||||
Pure 25 (25 °C) | 6.47 | 3.57 × 10−3 | 0.72 | 19.3 | 1.87 × 10−4 | 0.68 | 361.5 |
Pure 45 (45 °C) | 15.01 | 2.64 × 10−4 | 0.69 | 28.73 | 9.04 × 10−4 | 0.54 | 519.9 |
Pure 55 (55 °C) | 10.97 | 3.57 × 10−3 | 0.77 | 27.86 | 2.41 × 10−4 | 0.65 | 396.9 |
S-25 (25 °C) | 7.63 | 1.57 × 10−4 | 0.73 | 123.2 | 2.06 × 10−4 | 0.66 | 692.9 |
S-45 (45 °C) | 1.02 | 1.53 × 10−7 | 0.82 | 2433 | 4.63 × 10−6 | 0.78 | 4621 |
S-55 (55 °C) | 20.51 | 4.93 × 10−6 | 0.64 | 287.4 | 9.36 ×10−6 | 0.62 | 7808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, M.; Ma, R.; Du, A.; Fan, Y.; Zhao, X.; Jun, N.; Cao, X. Effect of Temperature on the Morphology and Corrosion Resistance of Modified Boron Nitride Nanosheets Incorporated into Steel Phosphate Coating. Metals 2023, 13, 1186. https://doi.org/10.3390/met13071186
Muhammad M, Ma R, Du A, Fan Y, Zhao X, Jun N, Cao X. Effect of Temperature on the Morphology and Corrosion Resistance of Modified Boron Nitride Nanosheets Incorporated into Steel Phosphate Coating. Metals. 2023; 13(7):1186. https://doi.org/10.3390/met13071186
Chicago/Turabian StyleMuhammad, Mustafa, Ruina Ma, An Du, Yongzhe Fan, Xue Zhao, Niu Jun, and Xiaoming Cao. 2023. "Effect of Temperature on the Morphology and Corrosion Resistance of Modified Boron Nitride Nanosheets Incorporated into Steel Phosphate Coating" Metals 13, no. 7: 1186. https://doi.org/10.3390/met13071186
APA StyleMuhammad, M., Ma, R., Du, A., Fan, Y., Zhao, X., Jun, N., & Cao, X. (2023). Effect of Temperature on the Morphology and Corrosion Resistance of Modified Boron Nitride Nanosheets Incorporated into Steel Phosphate Coating. Metals, 13(7), 1186. https://doi.org/10.3390/met13071186