A Novel Lap-Butt Joint Design for FSW of Aluminum to Steel in Tee-Configuration: Joining Mechanism, Intermetallic Formation, and Fracture Behavior
Abstract
:1. Introduction
2. Materials and Method
3. Results
4. Discussion
5. Conclusions
- 1-
- The material flow around the tool can form a metallurgical bond only if the flow lines of the two materials (Al and St) are in the same direction. Otherwise, a “kissing bond” is formed, which has very low strength. No IMC layer was observed in these kissing bonds;
- 2-
- The thickness of the IMC layer is slightly higher in the first welding pass, which is due to the heat effect of the second welding pass. As a result, the irregularities formed at the interface in the first pass disappear in the second pass, mainly due to the growth of IMC. This leads to a weakening of this interface and leads to its failure during the tensile test in the direction of the skin;
- 3-
- The fracture load is higher when the load is applied in the stringer direction. In this state, a larger part of the interface is in the shear mode. In this mode, the Al/St interface breaks in a ductile manner through the Al instead of undergoing a brittle fracture through the IMC layer.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gullino, A.; Matteis, P.; D’aiuto, F. Review of aluminum-to-steel welding technologies for car-body applications. Metals 2019, 9, 315. [Google Scholar] [CrossRef]
- Rostamiyan, Y.; Seidanloo, A.; Sohrabpoor, H.; Teimouri, R. Experimental studies on ultrasonically assisted friction stir spot welding of AA6061. Arch. Civ. Mech. Eng. 2015, 15, 335–346. [Google Scholar] [CrossRef]
- Huang, Y.; Wan, L.; Meng, X.; Xie, Y.; Lv, Z.; Zhou, L. Probe shape design for eliminating the defects of friction stir lap welded dissimilar materials. J. Manuf. Process. 2018, 35, 420–427. [Google Scholar] [CrossRef]
- Singh, J.; Arora, K.S.; Shukla, D.K.; Kumar, H. Mechanical and microstructural characterization of cold metal transfer (CMT) spot aluminium-steel weld-brazed joints. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 2506–2515. [Google Scholar] [CrossRef]
- Xu, P.; Hua, X.; Shen, C.; Huang, Y.; Li, F.; Zhang, Y. Dynamic growth model of Fe2Al5 during dissimilar joining of Al to steel using the variable polarity cold metal transfer (VP-CMT). J. Mater. Process. Technol. 2022, 302, 117477. [Google Scholar] [CrossRef]
- Römisch, D.; Kraus, M.; Merklein, M. Investigation of the influence of formed, non-rotationally symmetrical pin geometries and their effect on the joint quality of steel and aluminium sheets by direct pin pressing. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 1187–1202. [Google Scholar] [CrossRef]
- Wang, X.; Lados, D.A. Optimization of aluminum-to-steel friction stir lap welding for the fabrication of high-integrity structural components. J. Adv. Join. Process. 2022, 5, 100114. [Google Scholar] [CrossRef]
- Beygi, R.; Carbas, R.; Queiros, A.; Marques, E.A.S.; Shi, R.; da Silva, L.F.M. Comparative Study Between Stainless Steel and Carbon Steel During Dissimilar Friction Stir Welding with Aluminum: Kinetics of Al–Fe Intermetallic Growth. Met. Mater. Int. 2022, 28, 1948–1959. [Google Scholar] [CrossRef]
- Beygi, R.; Akhavan-Safar, A.; Carbas, R.; Barbosa, A.; Marques, E.; da Silva, L. Utilizing a ductile damage criterion for fracture analysis of a dissimilar aluminum/steel joint made by friction stir welding. Eng. Fract. Mech. 2022, 274, 108775. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Yao, Z.; Lou, F. Effect of tool offset on the microstructure and properties of AA6061/AZ31B friction stir welding joints. Metals 2020, 10, 546. [Google Scholar] [CrossRef]
- Matsuda, T.; Ogaki, T.; Hayashi, K.; Iwamoto, C.; Nozawa, T.; Ohata, M.; Hirose, A. Fracture dominant in friction stir spot welded joint between 6061 aluminum alloy and galvannealed steel based on microscale tensile testing. Mater. Des. 2022, 213, 110344. [Google Scholar] [CrossRef]
- Hashem, M.; Wagih, A.; Lubineau, G. Laser-based pretreatment of composite T-joints for improved pull-off strength and toughness. Compos. Struct. 2022, 291, 115545. [Google Scholar] [CrossRef]
- Carvalho, P.M.D.; Campilho, R.D.S.G.; Sánchez-Arce, I.J.; Rocha, R.J.B.; Soares, A.R.F. Adhesively-bonded T-joint cohesive zone analysis using dual-adhesives. Procedia Struct. Integr. 2022, 41, 24–35. [Google Scholar] [CrossRef]
- Nejad, R.M.; Moghadam, D.G.; Hadi, M.; Zamani, P.; Berto, F. An investigation on static and fatigue life evaluation of grooved adhesively bonded T-joints. Structures 2022, 35, 340–349. [Google Scholar] [CrossRef]
- Nonnenmann, T.; Beygi, R.; Carbas, R.; da Silva, L.; Öchsner, A. Feasibility study on hybrid weld-bonding between dissimilar material for automotive industry. Int. J. Adhes. Adhes. 2023, 121, 103316. [Google Scholar] [CrossRef]
- Sun, T.; Roy, M.J.; Strong, D.; Simpson, C.; Withers, P.J.; Prangnell, P.B. Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld. J. Mater. Process. Technol. 2019, 263, 256–265. [Google Scholar] [CrossRef]
- Rana, H.; Campanella, D.; Buffa, G.; Fratini, L. Dissimilar titanium-aluminum skin-stringer joints by FSW: Process mechanics and performance. Mater. Manuf. Process. 2022, 38, 471–484. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Gao, F.; Vairis, A. Effect of FSW process on anisotropic of titanium alloy T-joint. Mater. Manuf. Process. 2021, 37, 25–33. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Liu, X.; Gao, F.; Yu, Y.; Vairis, A. Strengthening mechanism of friction stir welded alpha titanium alloy specially designed T-joints. J. Manuf. Process. 2020, 55, 1–12. [Google Scholar] [CrossRef]
- Duong, H.D.; Okazaki, M.; Tran, T.H. Influence of probe length on the formation of an interface in friction stir welded T-lap joints. Mater. Manuf. Process. 2021, 36, 693–701. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Patel, V.; Vairis, A.; Wang, F. Formability of an AA5083 aluminum alloy T-joint using SSFSW on both corners. Mater. Manuf. Process. 2019, 34, 1737–1744. [Google Scholar] [CrossRef]
- Jesus, J.; Costa, J.; Loureiro, A.; Ferreira, J. Assessment of friction stir welding aluminium T-joints. J. Mater. Process. Technol. 2018, 255, 387–399. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Han, S.C.; Jun, T.S. Effect of welding speed on the microstructure and texture development in the individual weld zone of friction stir welded DP780 steel. J. Mater. Res. Technol. 2023, 23, 4976–4989. [Google Scholar] [CrossRef]
- Liu, T.S.; Qiu, F.; Yang, H.Y.; Shu, S.L.; Xie, J.F.; Jiang, Q.C.; Zhang, L.C. Insights into the influences of nanoparticles on microstructure evolution mechanism and mechanical properties of friction-stir-welded Al 6061 alloys. Mater. Sci. Eng. A 2023, 871, 144929. [Google Scholar] [CrossRef]
- Kumar, K.K.; Kumar, A.; Nagu, K. Mechanical and Corrosion Behaviour of Friction Stir Welded 5083–6061 Aluminium Alloy Joints: Effect of Base Material Position. Trans. Indian Inst. Met. 2023, 1–12. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Shen, J.; Fu, B.; dos Santos, J.F.; Klusemann, B.; Vairis, A. Comparing the local-global deformation mechanism in different friction stir welding sequences of Ti-4Al-0.005B titanium alloy T-joints. Mater. Sci. Eng. A 2021, 823, 141698. [Google Scholar] [CrossRef]
- Beygi, R.; Galvão, I.; Akhavan-Safar, A.; Pouraliakbar, H.; Fallah, V.; da Silva, L.F.M. Effect of Alloying Elements on Intermetallic Formation during Friction Stir Welding of Dissimilar Metals: A Critical Review on Aluminum/Steel, Mdpi.Com. (n.d.). Available online: https://www.mdpi.com/2075-4701/13/4/768 (accessed on 28 April 2023).
- Karimi-Dermani, O.; Abbasi, A.; Roeen, G.A.; Nayyeri, M.J. A novel approach to dissimilar joining of AA7075 to AZ31B by friction stir soldering using Sn intermediate layer. Mater. Manuf. Process. 2022, 37, 942–955. [Google Scholar] [CrossRef]
- Beygi, R.; Carbas, R.; Barbosa, A.; Marques, E.; da Silva, L. Buttering for FSW: Enhancing the fracture toughness of Al-Fe intermetallics through nanocrystallinity and suppressing their growth. J. Manuf. Process. 2023, 90, 233–241. [Google Scholar] [CrossRef]
- Beygi, R.; Mehrizi, M.Z.; Akhavan-Safar, A.; Safaei, S.; Loureiro, A.; da Silva, L.F.M. Design of friction stir welding for butt joining of aluminum to steel of dissimilar thickness: Heat treatment and fracture behavior. Int. J. Adv. Manuf. Technol. 2021, 112, 1951–1964. [Google Scholar] [CrossRef]
- Beygi, R.; Carbas, R.; Barbosa, A.; Marques, E.; da Silva, L.F.M. A comprehensive analysis of a pseudobrittle fracture at the interface of intermetallic of η and steel in aluminum/steel joints made by FSW: Mi-crostructure and fracture behavior. Mater. Sci. Eng. A 2021, 824, 141812. [Google Scholar] [CrossRef]
- Tanaka, T.; Nezu, M.; Uchida, S.; Hirata, T. Mechanism of intermetallic compound formation during the dissimilar friction stir welding of aluminum and steel. J. Mater. Sci. 2020, 55, 3064–3072. [Google Scholar] [CrossRef]
- Sieradzki, K. Curvature Effects in Alloy Dissolution. J. Electrochem. Soc. 1993, 140, 2868–2872. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beygi, R.; Talkhabi, A.A.; Mehrizi, M.Z.; Marques, E.A.S.; Carbas, R.J.C.; da Silva, L.F.M. A Novel Lap-Butt Joint Design for FSW of Aluminum to Steel in Tee-Configuration: Joining Mechanism, Intermetallic Formation, and Fracture Behavior. Metals 2023, 13, 1027. https://doi.org/10.3390/met13061027
Beygi R, Talkhabi AA, Mehrizi MZ, Marques EAS, Carbas RJC, da Silva LFM. A Novel Lap-Butt Joint Design for FSW of Aluminum to Steel in Tee-Configuration: Joining Mechanism, Intermetallic Formation, and Fracture Behavior. Metals. 2023; 13(6):1027. https://doi.org/10.3390/met13061027
Chicago/Turabian StyleBeygi, Reza, Amir Abbas Talkhabi, Majid Zarezadeh Mehrizi, Eduardo A. S. Marques, Ricardo J. C. Carbas, and Lucas F. M. da Silva. 2023. "A Novel Lap-Butt Joint Design for FSW of Aluminum to Steel in Tee-Configuration: Joining Mechanism, Intermetallic Formation, and Fracture Behavior" Metals 13, no. 6: 1027. https://doi.org/10.3390/met13061027