Influence of the Duration and Temperature of the Al-Fin Process for the Cast Iron Insert on the Microstructure of the Bimetallic Joint Obtained in the Piston Casting Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of the Piston
2.2. Preparation of the Specimens
3. Results
3.1. Optical Microscopy
3.2. SEM Analysis
3.3. Analysis of Variance
4. Discussion
5. Conclusions
- The thickness of the diffusion layer formed between the piston alloy (AlSi9) and the cast iron does not increase with the increase in the duration of the Al-Fin process.
- It was found that the change in temperature of the AlSi9 alloy and the duration of the Al-Fin process did not significantly affect the thickness of the intermetallic layer.
- A statistically significant effect of both the duration of the Al-Fin process and the temperature of the AlSi9 alloy on the thickness of the transition layer of the bimetallic joint was observed.
- The highest value of hardness was noted in the resulting intermetallic compound Al2Fe5. It is higher compared to the hardness of the joined materials.
- The content of flake graphite in the resulting intermetallic compound decreases with increasing duration of the Al-Fin process. The thicker the transition layer becomes, the less graphite is present in the resulting intermetallic compound.
- The diffusion of Fe atoms towards the AlSi9 aluminium alloy in the form of flake-shaped clusters was observed.
- The saturation of the diffusion layer with iron atoms depends on the duration of the Al-Fin process.
- The SEM-EDS analysis showed the presence of the FeAl3 and Fe2Al5 intermetallic phases in the resulting bimetallic joint. The intermetallic layer determines the quality of the joint between the cast iron insert and the S2N alloy of the piston. The boundary between the Fe2Al5 intermetallic layer and the aluminium alloy zone of the piston is jagged.
- The morphology of the layer on the boundary between the cast iron insert and the AlSi9 layer is flat, which means that the intermetallic phases grow mainly through the diffusion of elements in the cast iron.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szajnar, J.; Wróbel, P.; Wróbel, T. Model castings with composite surface layer—Application. Arch. Foundry Eng. 2008, 8, 105–110. [Google Scholar]
- Żaba, K.; Trzepieciński, T. The Role of Al-10%Si Coating in the Manufacture and Use of Aluminized Open-Joint Steel Tubes. Materials 2022, 15, 4210. [Google Scholar] [CrossRef] [PubMed]
- Gawroński, J.; Szajnar, J.; Wróbel, P. Study on theoretical bases of receiving composite alloy layers on surface of cast steel castings. J. Mater. Process. Technol. 2004, 157–158, 679–682. [Google Scholar] [CrossRef]
- Tayal, R.K.; Kumar, S.; Singh, V.; Garga, R. Characterization and Microhardness Evaluation of A356/Mg Joint Produced by Vacuum-Assisted Sand Mold Compound Casting Process. Int. J. Met. 2019, 13, 392–406. [Google Scholar] [CrossRef]
- Tayal, R.K.; Kumar, S.; Singh, V.; Gupta, A.; Ujjawal, D. Experimental Investigation and Evaluation of Joint Strength of A356/Mg Bimetallic Fabricated Using Compound Casting Process. Int. J. Met. 2019, 13, 686–699. [Google Scholar] [CrossRef]
- Bae, J.H.; Prasada Rao, A.K.; Kim, K.H.; Kim, N.J. Cladding of Mg alloy with Al by twin-roll casting. Scr. Mater. 2011, 64, 836–839. [Google Scholar] [CrossRef]
- Hajjari, E.; Divandari, M.; Razavi, S.H.; Homma, T.; Kamado, S. Intermetallic compounds and antiphase domains in Al/Mg compound casting. Intermetallics 2012, 23, 182–186. [Google Scholar] [CrossRef]
- Paramsothy, M.; Srikanth, N.; Gupta, M. Solidification processed Mg/Al bimetal macrocomposite: Microstructure and mechanical properties. J. Alloy. Compd. 2008, 461, 200–208. [Google Scholar] [CrossRef]
- Divandari, M.; Vahid Golpayegani, A.R. Study of Al/Cu rich phases formed in A356 alloy by inserting Cu wire in pattern in LFC process. Mater. Des. 2009, 30, 3279–3285. [Google Scholar] [CrossRef]
- Lee, T.H.; Lee, Y.J.; Park, K.T.; Nersisyan, H.H.; Jeong, H.G.; Lee, J.H. Controlling Al/Cu composite diffusion layer during hydrostatic extrusion by using colloidal Ag. J. Mater. Process. Technol. 2013, 213, 487–494. [Google Scholar] [CrossRef]
- Viala, J.C.; Peronnet, M.; Barbeau, F.; Bosselet, F.; Bouix, J. Interface chemistry in aluminium alloy castings reinforced with iron base inserts. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1417–1420. [Google Scholar] [CrossRef]
- Chen, G.; He, Y.H.; Shen, P.Z. Research actualities on materials and processes of engine piston parts and cylinder liner. Mater. Sci. Eng. Powder Metall. 2009, 14, 205–212. [Google Scholar]
- Uthayakumar, M.; Prabhakaran, P.; Aravindan, S.; Sivaprasad, J.V. Precision Machining of an Aluminum Alloy Piston Reinforced with a Cast Iron Insert. Int. J. Precis. Eng. Manuf. 2009, 10, 7–13. [Google Scholar] [CrossRef]
- Dolata, A.J.; Wieczorek, J.; Dyzia, M.; Starczewski, M. Assessment of the Tribological Properties of Aluminum Matrix Composites Intended for Cooperation with Piston Rings in Combustion Engines. Materials 2022, 15, 3806. [Google Scholar] [CrossRef]
- Manasijević, S.; Radiša, R.; Brodarac, Z.Z.; Dolić, N.; Djurdjevic, M. Al-Fin bond in aluminum piston alloy & austenitic cast iron insert. Int. J. Met. 2015, 9, 27–32. [Google Scholar]
- Aguado, E.; Baquedano, A.; Uribe, U.; Fernandez-Calvo, A.I.; Niklas, A. Comparative Study of Different Interfaces of Steel Inserts in Aluminium Castings. Mater. Sci. Forum 2013, 765, 711–715. [Google Scholar]
- Suryadarma, E.H.E.; Ai, T.J.; Bawono, B.; Siswantoro, A.T. Improving Bimetal Bond Quality Between Cast Steel and Aluminum Alloys Using Response Surface Methodology. Int. J. Met. 2022, 16, 1432–1441. [Google Scholar] [CrossRef]
- Manasijević, S.; Dolić, N.; Zovko-Brodarac, Z.; Djurdjević, M.; Radiš, R. An Analysis of Intermetallic Bonding between a Ring Carrier and an Aluminum Piston Alloy. Metall. Mater. Trans. 2014, 45, 4580–4587. [Google Scholar] [CrossRef]
- Acar, F.; Ozturk, F.; Bayrak, M. Effects of Variations in Alloy Content and Machining Parameters on the Strength of the Intermetallic Bonding Between a Diesel Piston and a Ring Carrier. Mater. Technol. 2010, 44, 391–395. [Google Scholar]
- Ramadan, M.; Khaliq, A.; Hafez, K.M.; Alghamdi, A.S.; Fathy, N.; Harraz, F.A.; Ayadi, B.; Abdel Halim, K.S. Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting. Crystals 2022, 12, 324. [Google Scholar] [CrossRef]
- Li, L.; Sang, G.; Jiang, G. Current researches and status of hot dip aluminizing. Mater. Rev. 2008, 22, 76–78. [Google Scholar]
- Li, C.; Xiong, J.; Sun, L.; Liao, Z.; Peng, M.C. Effect of Si content in hot dipping aluminium bath on Al–Fe bonding layer of aluminium piston with reinforced cast iron ring. Mater. Sci. Technol. 2012, 28, 953–958. [Google Scholar] [CrossRef]
- Springer, H.; Kostka, A.; Payton, E.J.; Raabe, D.; Kaysserpyzalla, A.; Eggeler, G. On the formation and growth of intermetallic phases during interdiffusion between low carbon steel and aluminium alloys. Acta Mater. 2011, 59, 1586–1600. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Vahey, J.; Hanney, D. Micro shot blasting of machine tools for improving surface finish and reducing cutting forces in manufacturing. Mater. Des. 2005, 26, 203–208. [Google Scholar] [CrossRef]
- Javier, G.F.; Planell, J.A.; Padrós, A.; Aparicio, C. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dent. Mater. 2007, 23, 486–491. [Google Scholar] [CrossRef]
- Khan, S.A.; Bhuiyan, M.S.; Miyashita, Y.; Mutoh, Y.; Koike, T. Corrosion fatigue behavior of die-cast and shot-blasted AM60 magnesium alloy. Mater. Sci. Eng. A 2011, 528, 1961–1966. [Google Scholar] [CrossRef]
- Lee, T.C.; Deng, J.X. Mechanical surface treatments of edged ceramic composites for improved strength and reliability. J. Eur. Ceram. Soc. 2002, 22, 545–550. [Google Scholar] [CrossRef]
- Raykowski, A.; Hader, M. Blasting cleaning of gas turbine components: Deposit removal and substrate deformation. Wear 2001, 249, 127–132. [Google Scholar] [CrossRef]
- Piątkowski, J.; Kamiński, P. Chosen Aspects of Quality Defects of ”Alphin” Inserts in Combustions Pistons. Arch. Foundry Eng. 2015, 15, 61–64. [Google Scholar] [CrossRef]
- Uthayakumar, M.; Prabhakaran, G.; Aravindan, S.; Sivaprasad, J.V. Influence of cutting force on bimetallic piston machning by a cubic boron nitride (CBN) tool. Mater. Manuf. Process. 2012, 27, 1078–1083. [Google Scholar] [CrossRef]
- Dolata, A.J.; Dyzia, M.; Wieczorek, J. Tribological Properties of Single (AlSi7/SiCp, AlSi7/GCsf) and Hybrid (AlSi7/SiCp + GCsf) Composite Layers Formed in Sleeves via Centrifugal Casting. Materials 2019, 12, 2803. [Google Scholar] [CrossRef]
- Piątkowski, J.; Czerepak, M. The Crystallization of the AlSi9 Alloy Designed for the Alfin Processing of Ring Supports in Engine Pistons. Arch. Foundry Eng. 2020, 11, 65–70. [Google Scholar]
- Stolbchenko, M.; Makeieva, H.; Grydin, O.; Frolov, Y.; Schaper, M. Strain parameters at hot rolling of aluminum strips reinforced with steel netting. J. Sandw. Struct. Mater. 2020, 22, 2009–2029. [Google Scholar] [CrossRef]
- Karathanasopoulos, N.; Mohr, D. Strength and Failure of Self-Piercing Riveted Aluminum and Steel Sheet Joints: Multi-axial Experiments and Modeling. J. Adv. Join. Process. 2022, 5, 100107. [Google Scholar] [CrossRef]
- Kuryntsev, S. A Review: Laser Welding of Dissimilar Materials (Al/Fe, Al/Ti, Al/Cu)—Methods and Techniques, Microstructure and Properties. Materials 2022, 15, 122. [Google Scholar] [CrossRef]
- Meco, S.; Cozzolino, L.; Ganguly, S.; Williams, S.; McPerson, N. Laser welding of steel to aluminium: Thermal modelling and joint strength analysis. J. Mater. Process. Technol. 2017, 247, 121–133. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, X.; Huang, Y.; Yu, L. Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding. Int. J. Heat Mass Transf. 2020, 160, 120103. [Google Scholar] [CrossRef]
- Ai, Y.; Yu, L.; Huang, Y.; Liu, X. The investigation of molten pool dynamic behaviors during the ”∞” shaped oscillating laser welding of aluminum alloy. Int. J. Therm. Sci. 2022, 173, 107350. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; El-Sayed Seleman, M.M.; Fydrych, D.; Çam, G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review. Materials 2023, 16, 2971. [Google Scholar] [CrossRef]
- Mahto, R.P.; Pal, S.K. Friction Stir Welding of Dissimilar Materials: An Investigation of Microstructure and Nano-Indentation Study. J. Manuf. Process. 2020, 55, 103–118. [Google Scholar] [CrossRef]
- Basak, S.; Das, H.; Pal, T.K. Characterization of intermetallics in aluminum to zinc coated interstitial free steel joining by pulsed MIG brazing for automotive application. Mater. Charact. 2016, 112, 229–237. [Google Scholar] [CrossRef]
- Tayal, R.K.; Singh, V.; Kumar, S.; Garg, R. Compound casting—A literature review. In Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA University of Science and Technology, Faridabad, India, 19–20 October 2012. [Google Scholar]
- Liu, Y.; Bian, X.F.; Yang, J.; Zhang, K.; Feng, L.; Yang, C.C. An investigation of metallurgical bonding in Al–7Si/gray iron bimetal composites. J. Mater. Res. 2013, 28, 3190–3198. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, M.; Bian, X.; Liu, M.; Li, J. An Al–7Si alloy/cast iron bimetallic composite with super-high shear strength. J. Mater. Res. Technol. 2019, 8, 3126–3136. [Google Scholar] [CrossRef]
- Osak, P.; Maszybrocka, J.; Zubko, M.; Rak, J.; Bogunia, S.; Łosiewicz, B. Influence of Sandblasting Process on Tribological Properties of Titanium Grade 4 in Artificial Saliva for Dentistry Applications. Materials 2021, 14, 7536. [Google Scholar] [CrossRef]
- Li, X.; Scherf, A.; Heilmaier, M.; Stein, F. The Al-Rich Part of the Fe-Al Phase Diagram. J. Phase Equilib. Diffus. 2016, 37, 162–173. [Google Scholar] [CrossRef]
- Manasijević, S.; Dolić, N.; Djurdjevic, M.; Mišić, N.; Davitkov, N. The intermetallic bonding between a ring carrier and aluminum piston alloy. Rev. Metal. 2015, 51, e048. [Google Scholar] [CrossRef]
Ni | Cu | Si | Cr | Mn | C | Fe |
---|---|---|---|---|---|---|
13.5 | 6.4 | 2.4 | 1.4 | 1.1 | 1.15 | remainder |
Si | Cu | Ni | Mg | Fe | Mn | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|
12.2 | 3.2 | 2.2 | 0.8 | 0.3 | 0.1 | 0.08 | 0.03 | remainder |
Si | Mg | Fe | Cu | Mn | Ni | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|
9.5 | 0.01 | 0.5 | 0.08 | 0.35 | 0.04 | 0.10 | 0.10 | remainder |
Area | Fe | Al | Si | Ni | Cu | Mn |
---|---|---|---|---|---|---|
1 | 0.6 | 75.3 | 19.6 | 1.9 | 2.5 | 0.1 |
2 | 3.3 | 79.9 | 14.1 | 0.9 | 1.3 | |
3 | 29.2 | 61.0 | 8.5 | - | - | - |
4 | 73.8 | - | 2.5 | 14.2 | 6.7 | 1.2 |
Parameter | Significance Level (p ≤ 0.05) |
---|---|
Duration of Al-Fin process (t) | 0.000 |
Temperature of AlSi9 alloy (T) | 0.000 |
t × T | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwajka, K.; Zielińska-Szwajka, J.; Trzepieciński, T. Influence of the Duration and Temperature of the Al-Fin Process for the Cast Iron Insert on the Microstructure of the Bimetallic Joint Obtained in the Piston Casting Process. Metals 2023, 13, 897. https://doi.org/10.3390/met13050897
Szwajka K, Zielińska-Szwajka J, Trzepieciński T. Influence of the Duration and Temperature of the Al-Fin Process for the Cast Iron Insert on the Microstructure of the Bimetallic Joint Obtained in the Piston Casting Process. Metals. 2023; 13(5):897. https://doi.org/10.3390/met13050897
Chicago/Turabian StyleSzwajka, Krzysztof, Joanna Zielińska-Szwajka, and Tomasz Trzepieciński. 2023. "Influence of the Duration and Temperature of the Al-Fin Process for the Cast Iron Insert on the Microstructure of the Bimetallic Joint Obtained in the Piston Casting Process" Metals 13, no. 5: 897. https://doi.org/10.3390/met13050897
APA StyleSzwajka, K., Zielińska-Szwajka, J., & Trzepieciński, T. (2023). Influence of the Duration and Temperature of the Al-Fin Process for the Cast Iron Insert on the Microstructure of the Bimetallic Joint Obtained in the Piston Casting Process. Metals, 13(5), 897. https://doi.org/10.3390/met13050897