Investigation of the LME Susceptibility of Dual Phase Steel with Different Zinc Coatings
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmitt, J.-H.; Iung, T. New developments of advanced high-strength steels for automotive applications. Comptes Rendus Phys. 2018, 19, 641–656. [Google Scholar] [CrossRef]
- Manladan, S.M.; Abdullahi, I.; Hamza, M.F. A Review on the application of resistance spot welding of automotive sheets. J. Eng. Technol. 2015, 10, 20–37. [Google Scholar]
- Ling, Z.; Wang, M.; Kong, L. Liquid Metal Embrittlement of Galvanized Steels During Industrial Processing: A Review. In Transactions on Intelligent Welding Manufacturing; Springer: Singapore, 2018; pp. 25–42. [Google Scholar] [CrossRef]
- Murugan, S.P.; Vijayan, V.; Ji, C. Four Types of LME Cracks in RSW of Zn-Coated AHSS. Weld. J. 2020, 99, 75s–92s. [Google Scholar] [CrossRef]
- Kim, Y.G.; Kim, I.J.; Kim, J.S.; Chung, Y.I.; Du Choi, Y. Evaluation of Surface Crack in Resistance Spot Welds of Zn-Coated Steel. Mater. Trans. 2014, 55, 171–175. [Google Scholar] [CrossRef]
- DiGiovanni, C.; Han, X.; Powell, A.; Biro, E.; Zhou, N.Y. Experimental and Numerical Analysis of Liquid Metal Embrittlement Crack Location. J. Mater. Eng. Perform. 2019, 28, 2045–2052. [Google Scholar] [CrossRef]
- Frei, J.; Biegler, M.; Rethmeier, M.; Böhne, C.; Meschut, G. Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation. Sci. Technol. Weld. Join. 2019, 24, 624–633. [Google Scholar] [CrossRef]
- Bhattacharya, D. Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Mater. Sci. Technol. 2018, 34, 1809–1829. [Google Scholar] [CrossRef]
- Frei, J.; Rethmeier, M. Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding. Weld World 2018, 62, 1031–1037. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Cho, L.; Ghassemi-Armaki, H.; van der Aa, E.; Pichler, A.; Findley, K.O.; Speer, J.G. Quantitative assessment of the characteristics of liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. In Proceedings of the Sheet Metal Welding Conference XVIII, Livonia, MI, USA, 17–18 October 2018. [Google Scholar]
- DiGiovanni, C.; He, L.; Pistek, U.; Goodwin, F.; Biro, E.; Zhou, N.Y. Role of spot weld electrode geometry on liquid metal embrittlement crack development. J. Manuf. Process. 2020, 49, 1–9. [Google Scholar] [CrossRef]
- Murugan, S.P.; Mahmud, K.; Ji, C.; Jo, I.; Park, Y.-D. Critical design parameters of the electrode for liquid metal embrittlement cracking in resistance spot welding. Weld World 2019, 63, 1613–1632. [Google Scholar] [CrossRef]
- Kim, J.-U.; Murugan, S.P.; Kim, J.-S.; Yook, W.; Lee, C.-Y.; Ji, C.; Jeon, J.B.; Park, Y.-D. Liquid metal embrittlement during the resistance spot welding of galvannealed steels: Synergy of liquid Zn, α-Fe(Zn) and tensile stress. Sci. Technol. Weld. Join. 2021, 26, 196–204. [Google Scholar] [CrossRef]
- Ghatei-Kalashami, A.; Khan, M.S.; Lee, M.-Y.; Zhou, Y.N. High-temperature phase evolution of the ZnAlMg coating and its effect on mitigating liquid-metal-embrittlement cracking. Acta Mater. 2022, 229, 117836. [Google Scholar] [CrossRef]
- Kim, D.; Hong, S.-H.; Kang, J.-H.; Im, Y.-R.; Kim, S.-J. Effect of Zn-Coating Process on Liquid Metal Embrittlement of TRIP Steel. Met. Mater. Int. 2023, 29, 135–140. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Y.; Liu, Z.; Sun, Q.; Shen, X.; Zhang, Q.; Hu, Z.; Misra, R.D.K. Zn-induced liquid metal embrittlement and mechanical properties of advanced high-strength steel with resistance spot weld. Mater. Sci. Eng. A 2022, 843, 143088. [Google Scholar] [CrossRef]
- Böhne, C.; Meschut, G.; Biegler, M.; Frei, J.; Rethmeier, M. Prevention of liquid metal embrittlement cracks in resistance spot welds by adaption of electrode geometry. Sci. Technol. Weld. Join. 2020, 25, 303–310. [Google Scholar] [CrossRef]
- Böhne, C.; Meschut, G.; Biegler, M.; Rethmeier, M. Avoidance of liquid metal embrittlement during resistance spot welding by heat input dependent hold time adaption. Sci. Technol. Weld. Join. 2020, 25, 617–624. [Google Scholar] [CrossRef]
- Ashiri, R.; Shamanian, M.; Salimijazi, H.R.; Haque, M.A.; Bae, J.-H.; Ji, C.-W.; Chin, K.-G.; Park, Y.-D. Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels. Scr. Mater. 2016, 114, 41–47. [Google Scholar] [CrossRef]
- Choi, D.-Y.; Sharma, A.; Uhm, S.-H.; Jung, J.P. Liquid Metal Embrittlement of Resistance Spot Welded 1180 TRIP Steel: Effect of Electrode Force on Cracking Behavior. Met. Mater. Int. 2019, 25, 219–228. [Google Scholar] [CrossRef]
- DiGiovanni, C.; Bag, S.; Mehling, C.; Choi, K.W.; Macwan, A.; Biro, E.; Zhou, N.Y. Reduction in liquid metal embrittlement cracking using weld current ramping. Weld World 2019, 63, 1583–1591. [Google Scholar] [CrossRef]
- Wintjes, E.; DiGiovanni, C.; He, L.; Bag, S.; Goodwin, F.; Biro, E.; Zhou, Y. Effect of Multiple Pulse Resistance Spot Welding Schedules on Liquid Metal Embrittlement Severity. J. Manuf. Sci. Eng. 2019, 141, 101001. [Google Scholar] [CrossRef]
- Song, S.; Shojaee, M.; Midawi, A.; Sherepenko, O.; Ghassemi-Armaki, H.; Biro, E. Influence of expulsion and heat extraction resulting from changes to electrode force on liquid metal embrittlement during resistance spot welding. J. Mater. Res. Technol. 2023, 23, 1458–1470. [Google Scholar] [CrossRef]
- Frei, J.; Suwala, H.; Gumenyuk, A.; Rethmeier, M. Bestimmung der Rissanfälligkeit von hochfesten Stählen beim Widerstandspunktschweißen. Mater. Test. 2016, 58, 612–616. [Google Scholar] [CrossRef]
- DiGiovanni, C.; Biro, E. A review of current LME test methods and suggestions for developing a standardized test procedure. Weld World 2021, 65, 865–884. [Google Scholar] [CrossRef]
- Ashiri, R.; Haque, M.A.; Ji, C.-W.; Shamanian, M.; Salimijazi, H.R.; Park, Y.-D. Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels. Scr. Mater. 2015, 109, 6–10. [Google Scholar] [CrossRef]
- Tolf, E.; Hedegård, J.; Melander, A. Surface breaking cracks in resistance spot welds of dual phase steels with electrogalvanised and hot dip zinc coating. Sci. Technol. Weld. Join. 2013, 18, 25–31. [Google Scholar] [CrossRef]
- Biegler, M.; Böhne, C.; Seitz, G.; Meschut, G.; Rethmeier, M. Investigation of liquid metal embrittlemment avoidance strategies for dual phase steels via electro-thermomechanical finite element simulation. In Proceedings of the 6th International Conference on Steels in Cars and Trucks, Milan, Italy, 19–23 June 2022. [Google Scholar]
Nr. | Material | Sheet Thickness in mm | Rp0.2 in MPa |
---|---|---|---|
1 | DP 800 U | 1.5 | 495 |
2 | DP 800 EG | 1.0 | 518 |
3 | DP 800 GA | 1.5 | 518 |
4 | DP 800 GI | 1.5 | 491 |
5 | DP 800 ZM1 | 1.8 | 491 |
6 | DP 800 ZM2 | 1.8 | 538 |
Nr. | Material | Zn | Fe | Al | Mg |
---|---|---|---|---|---|
1 | DP 800 U | - | - | - | - |
2 | DP 800 EG | X | - | - | - |
3 | DP 800 GA | X | X | X | - |
4 | DP 800 GI | X | X | X | - |
5 | DP 800 ZM1 | X | X | X | X |
6 | DP 800 ZM2 | X | X | X | X |
Nr. | Material | Sheet Thickness (T) in mm | Current in kA | Spot Diameter (D) in mm | Mg |
---|---|---|---|---|---|
1 | DP 800 U | 1.5 | 6.7 | 6.2 | 5.1 |
2 | DP 800 EG | 1.0 | 6.2 | 5.0 | 5 |
3 | DP 800 GA | 1.5 | 6.8 | 6.3 | 5.1 |
4 | DP 800 GI | 1.5 | 7.0 | 6.2 | 5.1 |
5 | DP 800 ZM1 | 1.8 | 7.5 | 6.9 | 5.1 |
6 | DP 800 ZM2 | 1.8 | 7.7 | 7.0 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sari, B.; Biegler, M.; Rethmeier, M. Investigation of the LME Susceptibility of Dual Phase Steel with Different Zinc Coatings. Metals 2023, 13, 890. https://doi.org/10.3390/met13050890
El-Sari B, Biegler M, Rethmeier M. Investigation of the LME Susceptibility of Dual Phase Steel with Different Zinc Coatings. Metals. 2023; 13(5):890. https://doi.org/10.3390/met13050890
Chicago/Turabian StyleEl-Sari, Bassel, Max Biegler, and Michael Rethmeier. 2023. "Investigation of the LME Susceptibility of Dual Phase Steel with Different Zinc Coatings" Metals 13, no. 5: 890. https://doi.org/10.3390/met13050890
APA StyleEl-Sari, B., Biegler, M., & Rethmeier, M. (2023). Investigation of the LME Susceptibility of Dual Phase Steel with Different Zinc Coatings. Metals, 13(5), 890. https://doi.org/10.3390/met13050890