The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472. [Google Scholar] [CrossRef] [PubMed]
- Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 2009, 8, 494–499. [Google Scholar] [CrossRef]
- Zhang, F.J.; Zang, Y.P.; Huang, D.Z.; Di, C.A.; Zhu, D.B. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 2015, 6, 8356. [Google Scholar] [CrossRef] [PubMed]
- Someya, T.; Bauer, S.; Kaltenbrunner, M. Imperceptible organic electronics. Mrs. Bull. 2017, 42, 124–130. [Google Scholar] [CrossRef]
- Liu, L.P.; Zhan, Q.F.; Yang, H.L.; Li, H.H.; Zhang, S.L.; Liu, Y.W.; Wang, B.M.; Tan, X.H.; Li, R.W. Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers. Aip Adv. 2016, 6, 035206. [Google Scholar] [CrossRef]
- Kim, D.H.; Song, J.Z.; Choi, W.M.; Kim, H.S.; Kim, R.H.; Liu, Z.J.; Huang, Y.Y.; Hwang, K.C.; Zhang, Y.W.; Rogers, J.A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. P. Natl. Acad. Sci. USA 2008, 105, 18675–18680. [Google Scholar] [CrossRef]
- Kim, D.H.; Xiao, J.L.; Song, J.Z.; Huang, Y.G.; Rogers, J.A. Stretchable, Curvilinear Electronics Based on Inorganic Materials. Adv. Mater. 2010, 22, 2108–2124. [Google Scholar] [CrossRef]
- Theiss, S.D.; Wagner, S. Amorphous silicon thin-film transistors on steel foil substrates. Ieee Electr. Device L 1996, 17, 578–580. [Google Scholar] [CrossRef]
- Hua, Q.L.; Sun, J.L.; Liu, H.T.; Bao, R.R.; Yu, R.M.; Zhai, J.Y.; Pan, C.F.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y.G. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef]
- Nathan, A.; Ahnood, A.; Cole, M.T.; Lee, S. Flexible Electronics: The Next Ubiquitous Platform. Proc. Ieee 2012, 100, 1486–1517. [Google Scholar] [CrossRef]
- Bauer, S.; Bauer-Gogonea, S.; Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwodiauer, R. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 2014, 26, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Lu, N.S.; Ma, R.; Kim, Y.S.; Kim, R.H.; Wang, S.D.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Bartolozzi, C.; Natale, L.; Nori, F.; Metta, G. Robots with a sense of touch. Nat. Mater. 2016, 15, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Ghaffari, R.; Lu, N.S.; Rogers, J.A. Flexible and Stretchable Electronics for Biointegrated Devices. Annu. Rev. Biomed. Eng. 2012, 14, 113–128. [Google Scholar] [CrossRef]
- Parkin, S.; Jiang, X.; Kaiser, C.; Panchula, A.; Roche, K.; Samant, M. Magnetically engineered spintronic sensors and memory. Proc. Ieee 2003, 91, 661–680. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Roche, K.P.; Samant, M.G.; Rice, P.M.; Beyers, R.B.; Scheuerlein, R.E.; O’Sullivan, E.J.; Brown, S.L.; Bucchigano, J.; Abraham, D.W.; et al. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. 1999, 85, 5828–5833. [Google Scholar] [CrossRef]
- Melzer, M.; Makarov, D.; Calvimontes, A.; Karnaushenko, D.; Baunack, S.; Kaltofen, R.; Mei, Y.F.; Schmidt, O.G. Stretchable Magnetoelectronics. Nano Lett. 2011, 11, 2522–2526. [Google Scholar] [CrossRef]
- Qiao, X.Y.; Wen, X.C.; Wang, B.M.; Bai, Y.H.; Zhan, Q.F.; Xu, X.H.; Li, R.W. Enhanced stress-invariance of magnetization direction in magnetic thin films. Appl. Phys. Lett. 2017, 111, 132405. [Google Scholar] [CrossRef]
- Ota, S.; Ando, A.; Chiba, D. A flexible giant magnetoresistive device for sensing strain direction. Nat. Electron. 2018, 1, 124–129. [Google Scholar] [CrossRef]
- Karnaushenko, D.; Makarov, D.; Yan, C.L.; Streubel, R.; Schmidt, O.G. Printable Giant Magnetoresistive Devices. Adv. Mater. 2012, 24, 4518–4522. [Google Scholar] [CrossRef]
- Liu, Z.W.; Liu, Y.; Yan, L.; Tan, C.Y.; Ong, C.K. Thickness-dependent properties of FeTaN thin films deposited on flexible substrate. J. Appl. Phys. 2006, 99, 043903. [Google Scholar] [CrossRef]
- Liu, Z.W.; Zeng, D.C.; Ramanujan, R.V.; Ong, C.K. Rigid and flexible Fe-Zr-N magnetic thin films for microwave absorber. J. Appl. Phys. 2010, 107, 09A505. [Google Scholar] [CrossRef]
- Yang, F.F.; Yan, S.S.; Yu, M.X.; Dai, Y.Y.; Kang, S.S.; Chen, Y.X.; Pan, S.B.; Zhang, J.L.; Bai, H.L.; Xu, T.S.; et al. High-frequency electromagnetic properties of compositionally graded FeCoB-SiO2 granular films deposited on flexible substrates. J. Appl. Phys. 2012, 111, 113909. [Google Scholar] [CrossRef]
- Sekitani, T.; Someya, T. Stretchable, Large-area Organic Electronics. Adv. Mater. 2010, 22, 2228–2246. [Google Scholar] [CrossRef] [PubMed]
- Lacour, S.P.; Wagner, S.; Huang, Z.Y.; Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 2003, 82, 2404–2406. [Google Scholar] [CrossRef]
- Wen, X.C.; Wang, B.M.; Sheng, P.; Hu, S.; Yang, H.L.; Pei, K.; Zhan, Q.F.; Xia, W.X.; Xu, H.; Li, R.W. Determination of stress-coefficient of magnetoelastic anisotropy in flexible amorphous CoFeB film by anisotropic magnetoresistance. Appl. Phys. Lett. 2017, 111, 142403. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, S.; Vishawakarma, P.; Dev, A.S.; Reddy, V.R.; Gupta, A. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress. J. Magn. Magn. Mater. 2016, 418, 99–106. [Google Scholar] [CrossRef]
- Trivedi, H.; Shvartsman, V.V.; Lupascu, D.C.; Medeiros, M.S.A.; Pullar, R.C. Stress induced magnetic-domain evolution in magnetoelectric composites. Nanotechnology 2018, 29, 255702. [Google Scholar] [CrossRef]
- Zhang, J.; Lee, W.K.; Tu, R.; Rhee, D.; Zhao, R.; Wang, X.; Liu, X.; Hu, X.; Zhang, X.; Odom, T.W.; et al. Spontaneous Formation of Ordered Magnetic Domains by Patterning Stress. Nano Lett. 2021, 21, 5430–5437. [Google Scholar] [CrossRef]
- Chen, Y.F.; McCord, J.; Freudenberger, J.; Kaltofen, R.; Schmidt, O.G. Effects of strain on magnetic and transport properties of Co films on plastic substrates. J. Appl. Phys. 2009, 105, 07C302. [Google Scholar] [CrossRef]
- Yen, M.; Lai, Y.H.; Kuo, C.Y.; Chen, C.T.; Chang, C.F.; Chu, Y.H. Mechanical Modulation of Colossal Magnetoresistance in Flexible Epitaxial Perovskite Manganite. Adv. Funct. Mater. 2020, 30, 2004597. [Google Scholar] [CrossRef]
- Yu, Y.; Zhan, Q.F.; Wei, J.W.; Wang, J.B.; Dai, G.H.; Zuo, Z.H.; Zhang, X.S.; Liu, Y.W.; Yang, H.L.; Zhang, Y.; et al. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates. Appl. Phys. Lett. 2015, 106, 162405. [Google Scholar] [CrossRef]
- Liu, W.L.; Liu, M.; Ma, R.; Zhang, R.Y.; Zhang, W.Q.; Yu, D.P.; Wang, Q.; Wang, J.N.; Wang, H. Mechanical Strain-Tunable Microwave Magnetism in Flexible CuFe2O4 Epitaxial Thin Film for Wearable Sensors. Adv. Funct. Mater. 2018, 28, 1705928. [Google Scholar] [CrossRef]
- Dai, G.H.; Zhan, Q.F.; Liu, Y.W.; Yang, H.L.; Zhang, X.S.; Chen, B.; Li, R.W. Mechanically tunable magnetic properties of Fe81Ga19 films grown on flexible substrates. Appl. Phys. Lett. 2012, 100, 122407. [Google Scholar] [CrossRef]
- Ozkaya, B.; Saranu, S.R.; Mohanan, S.; Herr, U. Effects of uniaxial stress on the magnetic properties of thin films and GMR sensors prepared on polyimide substrates. Phys Status Solidi A 2008, 205, 1876–1879. [Google Scholar] [CrossRef]
- Peng, B.; Xie, Q.Y.; Zhang, W.L.; Zhong, Z.Y. Stress dependence of magnetic domains in FeCoSiB amorphous films. J. Appl. Phys. 2007, 101, 09C511. [Google Scholar] [CrossRef]
- Dai, G.; Xing, X.; Shen, Y.; Deng, X. Stress tunable magnetic stripe domains in flexible Fe81Ga19 films. J. Appl. Phys. D Appl. Phys. 2020, 53, 055001. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Mendez, M.; Vega, V.; Fernandez, A.; Prida, V.M. Tuning Nanohole Sizes in Ni Hexagonal Antidot Arrays: Large Perpendicular Magnetic Anisotropy for Spintronic Applications. Acs Appl. Nano Mater. 2019, 2, 1866–1875. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Martinez-Goyeneche, L.; Alvarez-Alonso, P.; Fernandez, A. Enhancement the perpendicular magnetic anisotropy of nanopatterned hard/soft bilayer magnetic antidot arrays for spintronic application. Nanotechnology 2020, 31, 485708. [Google Scholar] [CrossRef]
- Salaheldeen, M.; Nafady, A.; Abu-Dief, A.M.; Crespo, R.D.; Fernandez-Garcia, M.P.; Andres, J.P.; Anton, R.L.; Blanco, J.A.; Alvarez-Alonso, P. Enhancement of Exchange Bias and Perpendicular Magnetic Anisotropy in CoO/Co Multilayer Thin Films by Tuning the Alumina Template Nanohole Size. Nanomaterials 2022, 12, 2544. [Google Scholar] [CrossRef] [PubMed]
- Lou, K.H.; Xie, T.A.; Zhao, Q.W.; Jiang, B.Q.; Xia, C.C.; Zhang, H.Y.; Yao, Z.H.; Bi, C.; Bi, C. Perpendicular magnetic anisotropy in as-deposited CoFeB/MgO thin films. Appl. Phys. Lett. 2022, 121, 122401. [Google Scholar] [CrossRef]
- Silva, A.S.; Sa, S.P.; Bunyaev, S.A.; Garcia, C.; Sola, I.J.; Kakazei, G.N.; Crespo, H.; Navas, D. Dynamical behaviour of ultrathin [CoFeB (t(CoFeB))/Pd] films with perpendicular magnetic anisotropy. Sci. Rep. 2021, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Q.; Zhan, Q.F.; Li, J.C.; Liu, Q.F.; Wang, B.M.; Li, R.W. Influence of Oblique Sputtering on Stripe Magnetic Domain Structure and Magnetic Anisotropy of CoFeB Thin Films. Acta Metall. Sin. 2018, 54, 1281–1288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xie, Y.; Yang, H.; Hu, H.; Li, M.; Li, R.-W. The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films. Metals 2023, 13, 678. https://doi.org/10.3390/met13040678
Li H, Xie Y, Yang H, Hu H, Li M, Li R-W. The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films. Metals. 2023; 13(4):678. https://doi.org/10.3390/met13040678
Chicago/Turabian StyleLi, Hongyang, Yali Xie, Huali Yang, Haixu Hu, Mengchao Li, and Run-Wei Li. 2023. "The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films" Metals 13, no. 4: 678. https://doi.org/10.3390/met13040678
APA StyleLi, H., Xie, Y., Yang, H., Hu, H., Li, M., & Li, R.-W. (2023). The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films. Metals, 13(4), 678. https://doi.org/10.3390/met13040678