Preparation of Tannic Acid/Hyaluronic Acid Coating to Improve the Corrosion Resistance of Implant Material Based on AZ31B Magnesium Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Selection and Preparation
2.3. Fabrication of AZ31B/TA and AZ31B/TA/HYA
2.4. Solution Preparation for Immersion Test
2.5. Contact Angle Test
- Wad : adhesion energy (mJ/m2)
- γlv : surface tension (mJ/m2)
- θ : Contact angle between the liquid and the sample surface (°)
2.6. Corrosion Evaluation
2.6.1. Immersion Test
2.6.2. Tafel Polarization Test
2.6.3. Electrochemical Impedance Spectroscopy Test
2.6.4. Surface Characterization
3. Results and Discussion
3.1. Surface Morphological Analysis of Samples after Coating
3.2. FTIR Characterization Analysis
3.3. Surface Properties Analysis of Samples in Contact with Liquids
3.4. Tafel Polarization Analysis
3.5. Electrochemical Impedance Spectroscopy Analysis
3.6. Surface Morphological Analysis of Samples after Immersion Test
3.7. X-ray Diffraction Analysis
3.8. Mass Changes Analysis in Seven Days of SBF Immersion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, A.-M.; Bisignano, C.; James, S.L.; Abady, G.G.; Abedi, A.; Abu-Gharbieh, E.; Alhassan, R.K.; Alipour, V.; Arabloo, J.; Asaad, M.; et al. Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2021, 2, e580–e592. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Monazzah, S.; Bigham-Sadegh, A. Bone Injury and Fracture Healing Biology. Biomed. Environ. Sci. 2015, 28, 57–71. [Google Scholar] [PubMed]
- Ghiasi, M.S.; Chen, J.; Vaziri, A.; Rodriguez, E.K.; Nazarian, A. Bone Fracture Healing in Mechanobiological Modeling: A Review of Principles and Methods. Bone Rep. 2016, 6, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg Alloys for Orthopedic Implants—A Review. J. Magnes. Alloy. 2021, 9, 1884–1905. [Google Scholar] [CrossRef]
- Shinde, O.S. Orthopedic Implants Market by Product Type (Reconstructive Joint Replacements, Spinal Implants, Dental Implants, Trauma, Orthobiologics, and Others), Biomaterial, and Type: Global Opportunity Analysis and Industry Forecast, 2018–2025. Diakses 2019, 1, 2021. [Google Scholar]
- Goriainov, V.; Cook, R.; Latham, J.M.; Dunlop, D.G.; Oreffo, R.O. Bone and Metal: An Orthopaedic Perspective on Osseointegration of Metals. Acta Biomater. 2014, 10, 4043–4057. [Google Scholar] [CrossRef]
- Hussain, Z.; Ullah, I.; Liu, X.; Shen, W.; Ding, P.; Zhang, Y.; Gao, T.; Mansoorianfar, M.; Gao, T.; Pei, R. Tannin-Reinforced Iron Substituted Hydroxyapatite Nanorods Functionalized Collagen-Based Composite Nanofibrous Coating as a Cell-Instructive Bone-Implant Interface Scaffold. Chem. Eng. J. 2022, 438, 135611. [Google Scholar] [CrossRef]
- Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I. Study of Corrosion in Biocompatible Metals for Implants: A Review. J. Alloys Compd. 2017, 701, 698–715. [Google Scholar] [CrossRef] [Green Version]
- Girish, C.; Ajay, P. Biodegradable Bone Implants in Orthopedic Applicaions: A Review. Biocybern. Biomed. Eng. 2020, 40, 596–610. [Google Scholar]
- Kamrani, S.; Fleck, C. Biodegradable Magnesium Alloys as Temporary Orthopaedic Implants: A Review. BioMetals 2019, 32, 185–193. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, K.K.; Kumar, K.B.; Kumar, N. The Effect of Reinforcements on the Mechanical Properties of AZ31 Composites Prepared by Powder Metallurgy: An Overview. Mater. Today Proc. 2022, 56, 2293–2299. [Google Scholar] [CrossRef]
- Mert, F. Wear Behaviour of Hot Rolled AZ31B Magnesium Alloy as Candidate for Biodegradable Implant Material. Trans. Nonferrous Met. Soc. China 2017, 27, 2598–2606. [Google Scholar] [CrossRef]
- Ugender, S.; Kumar, A.; Reddy, A.S. Microstructure and Mechanical Properties of AZ31B Magnesium Alloy by Friction Stir Welding. Procedia Mater. Sci. 2014, 6, 1600–1609. [Google Scholar] [CrossRef]
- Willbold, E.; Kaya, A.A.; Kaya, R.A.; Beckmann, F.; Witte, F. Corrosion of Magnesium Alloy AZ31 Screws Is Dependent on the Implantation Site. Mater. Sci. Eng. B 2011, 176, 1835–1840. [Google Scholar] [CrossRef]
- Rahman, M.; Dutta, N.K.; Choudhury, N.R. Magnesium Alloys With Tunable Interfaces as Bone Implant Materials. Front. Bioeng. Biotechnol. 2020, 8, 564. [Google Scholar] [CrossRef]
- Kulyasova, O.B.; Khudododova, G.D.; Dyakonov, G.S.; Zheng, Y.; Valiev, R.Z. Effect of Microstructure Refinement on the Corrosion Behavior of the Bioresorbable Mg-1Zn-0.2Ca and Mg-1Ca Alloys. Materials 2022, 15, 6749. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; E, D.; Yang, W.; Qi, F.; Xie, D.; Shen, L.; Peng, S.; Shuai, C. Mg Bone Implant: Features, Developments and Perspectives. Mater. Des. 2020, 185, 108259. [Google Scholar] [CrossRef]
- Hu, H.; Nie, X.; Ma, Y. Corrosion and Surface Treatment of Magnesium Alloys. In Magnesium Alloys—Properties in Solid and Liquid States; InTech: London, UK, 2014; Volume 25, pp. 206–214. [Google Scholar]
- Guo, Z.; Xie, W.; Lu, J.; Guo, X.; Xu, J.; Xu, W.; Chi, Y.; Takuya, N.; Wu, H.; Zhao, L. Tannic Acid-Based Metal Phenolic Networks for Bio-Applications: A Review. J. Mater. Chem. B 2021, 9, 4098–4110. [Google Scholar] [CrossRef]
- Koopmann, A.-K.; Schuster, C.; Torres-Rodríguez, J.; Kain, S.; Pertl-Obermeyer, H.; Petutschnigg, A.; Hüsing, N. Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules 2020, 25, 4910. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, S.; Wang, L.; Yang, Y.; Liang, J.; Cao, B. Preparation of Hydroxyapatite/Tannic Acid Coating to Enhance the Corrosion Resistance and Cytocompatibility of AZ31 Magnesium Alloys. Coatings 2017, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Bigham, A.; Rahimkhoei, V.; Abasian, P.; Delfi, M.; Naderi, J.; Ghomi, M.; Dabbagh Moghaddam, F.; Waqar, T.; Nuri Ertas, Y.; Sharifi, S.; et al. Advances in Tannic Acid-Incorporated Biomaterials: Infection Treatment, Regenerative Medicine, Cancer Therapy, and Biosensing. Chem. Eng. J. 2022, 432, 134146. [Google Scholar] [CrossRef]
- Asgari, M.; Yang, Y.; Yang, S.; Yu, Z.; Yarlagadda, P.K.D.V.; Xiao, Y.; Li, Z. Mg−Phenolic Network Strategy for Enhancing Corrosion Resistance and Osteocompatibility of Degradable Magnesium Alloys. ACS Omega 2019, 4, 21931–21944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawada, C.; Kimura, M.; Masuda, Y.; Nomura, Y. Oral Administration of Hyaluronan Prevents Skin Dryness and Epidermal Thickening in Ultraviolet Irradiated Hairless Mice. J. Photochem. Photobiol. B Biol. 2015, 153, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Labour, M.-N.; Hoey, D.; Duffy, B.; Curtin, J.; Jaiswal, S. Enhanced Corrosion Resistance and Cytocompatibility of Biomimetic Hyaluronic Acid Functionalised Silane Coating on AZ31 Mg Alloy for Orthopaedic Applications. Mater. Med. 2018, 29, 144. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ruan, S.; Wang, Z.; Feng, N.; Zhang, Y. Hyaluronic Acid Coating Reduces the Leakage of Melittin Encapsulated in Liposomes and Increases Targeted Delivery to Melanoma Cells. Pharmaceutics 2021, 13, 1235. [Google Scholar] [CrossRef]
- Sieger, D.; Korzinskas, T.; Jung, O.; Stojanovic, S.; Wenisch, S.; Smeets, R.; Gosau, M.; Schnettler, R.; Najman, S.; Barbeck, M. The Addition of High Doses of Hyaluronic Acid to a Biphasic Bone Substitute Decreases the Proinflammatory Tissue Response. Int. J. Mol. Sci. 2019, 20, 1969. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Zheng, B.; Lang, H.; Qin, A.; Ou, J. Corrosion resistance and biocompatibility of polydopamine/hyaluronic acid composite coating on AZ31 magnesium alloy. Surfaces Interfaces 2020, 20, 100560. [Google Scholar] [CrossRef]
- Gwak, M.A.; Hong, B.M.; Park, W.H. Hyaluronic Acid/Tannic Acid Hydrogel Sunscreen with Excellent Anti-UV, Antioxidant, and Cooling Effects. Int. J. Biol. Macromol. 2021, 191, 918–924. [Google Scholar] [CrossRef]
- Liang, Z.; Qin, G.; Wang, L.; Meng, X.; Li, F. Microstructural Characterization and Mechanical Properties of Dissimilar Friction Welding of 1060 Aluminum to AZ31B Magnesium Alloy. Mater. Sci. Eng. A 2015, 645, 170–180. [Google Scholar] [CrossRef]
- Oyane, A.; Kim, H.-M.; Furuya, T.; Kokubo, T.; Miyazaki, T.; Nakamura, T. Preparation and Assessment of Revised Simulated Body Fluids. J. Biomed. Mater. Res. 2003, 65, 188–195. [Google Scholar] [CrossRef]
- Indira, K.; Sylvie, C.; Zhongke, W.; Hongyu, Z. Investigation of Wettability Properties of Laser Surface Modified Rare Earth Mg Alloy. Procedia Eng. 2016, 141, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhao, S.; Chen, M.; Zhang, X.; Zhang, J.; Li, X.; Zhang, H.; Shen, X.; Wang, J.; Huang, N. The Anticorrosion Mechanism of Phenolic Conversion Coating Applied on Magnesium Implants. Appl. Surf. Sci. 2018, 463, 953–967. [Google Scholar] [CrossRef]
- Baillot, R.; Deshayes, Y. Tools and Analysis Methods of Encapsulated LEDs. In Reliability Investigation of LED Devices for Public Light Applications; ISTE Press: Amsterdam, The Netherlands, 2017; pp. 43–106. [Google Scholar]
- Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic Acid and Its Biomedical Applications: A Review. Eng. Regen. 2020, 1, 102–113. [Google Scholar] [CrossRef]
- Chen, X.; Li, G.; Lian, J.; Jiang, Q. Study of the Formation and Growth of Tannic Acid Based Conversion Coating on AZ91D Magnesium Alloy. Surf. Coat. Technol. 2009, 204, 736–747. [Google Scholar] [CrossRef]
- Santiago-Medina, F.-J.; Pizzi, A.; Basso, M.C.; Delmotte, L.; Celzard, A. Polycondensation Resins by Flavonoid Tannins Reaction with Amines. Polymers 2017, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-K.; Jang, Y.-S.; Kim, S.-Y.; Lee, M.-H. Functions achieved by the hyaluronic acid derivatives coating and hydroxide film on bio-absorbed Mg. Appl. Surf. Sci. 2018, 473, 31–39. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, J.; Wang, Z.; Zhang, R.; Sand, W.; Zhang, L.; Duan, J.; Zhu, Q.; Hou, B. Corrosion of an AZ31B Magnesium Alloy by Sulfate-Reducing Prokaryotes in a Mudflat Environment. Microorganisms 2022, 10, 839. [Google Scholar] [CrossRef]
- Cui, L.-Y.; Liu, H.-P.; Xue, K.; Zhang, W.-L.; Zeng, R.-C.; Li, S.-Q.; Xu, D.; Han, E.-H.; Guan, S.-K. In Vitro Corrosion and Antibacterial Performance of Micro-Arc Oxidation Coating on {AZ}31 Magnesium Alloy: Effects of Tannic Acid. J. Electrochem. Soc. 2018, 165, C821–C829. [Google Scholar] [CrossRef]
- He, X.; Zhang, G.; Pei, Y.; Zhang, H. Layered hydroxide/polydopamine/hyaluronic acid functionalized magnesium alloys for enhanced anticorrosion, biocompatibility and antithrombogenicity in vascular stents. J. Biomater. Appl. 2020, 34, 1131–1141. [Google Scholar] [CrossRef]
- Hernandez-Alvarado, L.A.; Hernandez, L.S.; Lomeli, M.A.; Miranda-Vidales, J.M.; Narvaez, L.; Escudero, M.L. Corrosion rates of reabsorbable Mg-based materials coated with phytic acid. Corros. Eng. Sci. Technol. 2021, 56, 714–727. [Google Scholar] [CrossRef]
- Xu, W.; Han, E.-H.; Wang, Z. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution. J. Mater. Sci. Technol. 2018, 35, 64–75. [Google Scholar] [CrossRef]
- Zhai, P.; Peng, X.; Li, B.; Liu, Y.; Sun, H.; Li, X. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2019, 151, 1224–1239. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Feng, Y.; Deveaux, J.G.; Masoud, M.A.; Chandra, F.S.; Chen, H.; Zhang, D.; Feng, L. Biomineralization Forming Process and Bio-inspired Nanomaterials for Biomedical Application: A Review. Minerals 2019, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Newbury, D.E.; Ritchie, N.W.M. Is Scanning Electron Microscopy/Energy Dispersive X-Ray Spectrometry (SEM/EDS) Quantitative? Scanning 2013, 35, 141–168. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-M.; Miao, X.; Wei, Z.; Cui, J.; Li, S.Y.; Han, R.; Zhang, Y.; Wei, W. Iron-Tannic Acid Nanocomplexes: Facile Synthesis and Application for Removal of Methylene Blue from Aqueous Solution. J. Nanomater. Biostruct. 2016, 11, 1045–1061. [Google Scholar]
- Schwartz, A.; Kossenko, A.; Zinigrad, M.; Gofer, Y.; Borodianskiy, K.; Sobolev, A. Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte. Materials 2022, 15, 7374. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, E. Biocorrosion Behavior of Magnesium Alloy in Different Simulated Fluids for Biomedical Application. Mater. Sci. Eng. C 2009, 29, 1691–1696. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, C.; Zhang, X.; Tang, G.; Tian, X.; Chu, P.K. Corrosion Behavior of Biomedical AZ91 Magnesium Alloy in Simulated Body Fluids. J. Mater. Res. 2007, 22, 2004–2011. [Google Scholar] [CrossRef] [Green Version]
Material | Chemical Composition (%wt) | ||||||
---|---|---|---|---|---|---|---|
Al | Fe | Mn | Ni | Si | Zn | Mg | |
AZ31B Magnesium Alloy | 2.25 | 0.005 | 0.44 | 0.001 | 0.016 | 1.10 | Bal. |
Reagents | Composition | |
---|---|---|
Purity (%) | c-SBF | |
NaCl | >99.5 | 8.036 g |
NaHCO3 | >99.5 | 0.352 g |
KCl | >99.5 | 0.255 g |
K2HPO4·3H2O | >99 | 0.230 g |
MgCl2·6H2O | >98 | 0.311 g |
1.0 M–HCl | - | 40 mL |
CaCl2 | >95 | 0.293 g |
Na2SO4 | >99 | 0.072 g |
TRIS | >99.9 | 6.603 g |
1.0–HCl | - | ±0.2 mL |
Elements | Samples (%wt) | ||
---|---|---|---|
AZ31B | AZ31B/TA | AZ31B/TA/HYA | |
Magnesium | 95.96 | 9.3 | 0.58 |
Aluminium | 3.29 | 0.22 | - |
Zinc | 0.75 | - | - |
Carbon | - | 63.3 | 46.19 |
Oxygen | - | 27.18 | 53.23 |
Samples | Wavenumbers (cm−1) | Functional Groups |
---|---|---|
AZ31B/TA | 1074.35 | Primary amine |
1205.51 | Phenol | |
1350.17 | Aromatic secondary amine | |
1498.69 | C=C-C Aromatic ring stretch | |
1602.85 | -C=N- | |
1705.07 | Ketone (C=O) | |
2860.43 | Methylene (>CH2) | |
3390.86 | Hydroxyl group | |
AZ31B/TA/HYA | 1072.42 | Primary amine |
1213.23 | Phenol | |
1367.53 | Carboxylate | |
1425.40 | -OH from carboxylic acid | |
1496.76 | C=C-C Aromatic ring stretch | |
1633.71 | Amide | |
2862.36 | Methylene (>CH2) | |
3408.22 | Hydroxyl group | |
AZ31B/TA/HYA after seven days of SBF immersion | 867.97 | Carbonate ion |
1053.13 | Phosphate ion | |
1479.40 | Carbonate ion | |
3427.51 | Hydroxyl Group |
Samples | Ecorr (V) | log Icorr (A/cm2) | Icorr (A/cm2) | βa (V.dec−1) | βc (V.dec−1) |
---|---|---|---|---|---|
AZ31B | −1.6101 | −3.4816 | 3.29 × 10−4 | 0.12 | 0.12 |
AZ31B/TA | −1.5412 | −3.9280 | 1.18 × 10−4 | 0.09 | 0.09 |
AZ31B/TA/HYA | −1.4470 | −5.0406 | 9.11 × 10−6 | 0.54 | 0.14 |
Samples | AZ31B | AZ31B/TA | AZ31B/TA/HYA |
---|---|---|---|
Rs (Ω cm2) | 14.02 | 20.82 | 17.32 |
Cp (F/cm2) | - | 1.487 × 10−6 | 2.171 × 10−6 |
Rp (Ω cm2) | - | 206.9 | 535.6 |
Cdl (F/cm2) | 1.345 × 10−5 | 5.896 × 10−6 | 2.937 × 10−6 |
Rct (Ω cm2) | 1.823 × 104 | 4.676 × 105 | 1.284 × 106 |
RL (Ω cm2) | 1.592 × 104 | - | - |
L (Henri) | 1.079 × 104 | - | - |
Samples | Samples (% wt) | ||
---|---|---|---|
AZ31B | AZ31B/TA | AZ31B/TA/HYA | |
Magnesium | 14.94 | 7.31 | 5.74 |
Calcium | 12.95 | 14.96 | 16.28 |
Phosphorus | 18.93 | 27.53 | 30.16 |
Carbon | 4.3 | 5.67 | 5.00 |
Oxygen | 48.88 | 44.54 | 53.23 |
Compound Formula | Compound Name | COD Number |
---|---|---|
Mg | Magnesium | 9013054 |
Ca5(PO4)3OH | Hydroxyapatite | 9011091 |
Mg3(PO4)2 | Magnesium Phosphate | 1008830 |
Mg(OH)2 | Magnesium Hydroxide | 9003875 |
Samples | Mass (gr) | Mass Difference (gr) | Standard Deviation | |
---|---|---|---|---|
Before Immersion Test | After Immersion Test | |||
AZ31B | 0.610 | 0.459 | −0.151 | 0.0037 |
AZ31B/TA | 0.410 | 0.310 | −0.100 | 0.0055 |
AZ31B/TA/HYA | 0.370 | 0.310 | −0.060 | 0.0050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salsabila, A.; Pratama, A.; Nurrochman, A.; Hermawan, H.; Barlian, A.; Prajatelistia, E. Preparation of Tannic Acid/Hyaluronic Acid Coating to Improve the Corrosion Resistance of Implant Material Based on AZ31B Magnesium Alloy. Metals 2023, 13, 494. https://doi.org/10.3390/met13030494
Salsabila A, Pratama A, Nurrochman A, Hermawan H, Barlian A, Prajatelistia E. Preparation of Tannic Acid/Hyaluronic Acid Coating to Improve the Corrosion Resistance of Implant Material Based on AZ31B Magnesium Alloy. Metals. 2023; 13(3):494. https://doi.org/10.3390/met13030494
Chicago/Turabian StyleSalsabila, Aurelia, Aditya Pratama, Andrieanto Nurrochman, Hendra Hermawan, Anggraini Barlian, and Ekavianty Prajatelistia. 2023. "Preparation of Tannic Acid/Hyaluronic Acid Coating to Improve the Corrosion Resistance of Implant Material Based on AZ31B Magnesium Alloy" Metals 13, no. 3: 494. https://doi.org/10.3390/met13030494