Design and Characterization of Mg Alloy Pedicle Screws for Atlantoaxial Fixation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry of Models
2.1.1. Geometry of the Models of Screws
2.1.2. Atlantoaxial Fixation System
2.2. Static Structure Finite Element Analysis
2.2.1. Material Parameters
2.2.2. Meshing
2.2.3. Loads and Boundary Conditions
2.3. Sample Preparation
2.4. Performance Test
2.4.1. Pull-Out Strength Test
2.4.2. Torsional Strength Test
2.4.3. Immersion Test
3. Results
3.1. Simulation Analysis Results
3.2. Mechanical Test before Corrosion
3.3. Corrosion Test
3.4. Mechanical Properties after Corrosion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadlani, P.; Baratloo, A. Neck pain and limb weakness: A case of spontaneous atlantoaxial dislocation. Vis. J. Emerg. Med. 2021, 25, 101178. [Google Scholar] [CrossRef]
- Liawrungrueang, W.; Laohapoonrungsee, A.; Bunmaprasert, T. Acute traumatic lateral atlantoaxial dislocation associated with locked atlas lateral mass and odontoid process fracture: A clinical case study and literature review. N. Am. Spine Soc. J. 2022, 12, 100169. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. Atlantoaxial Rotatory Subluxations in Children: A Review. Spine J. 2015, 15, S239. [Google Scholar] [CrossRef]
- Juneja, M.; Sharma, S.; Jain, R. Atlantoaxial dislocation in a child with generalized primary dystonia. J. Clin. Neurosci. 2011, 18, 966–968. [Google Scholar] [CrossRef]
- Goel, A.; Dhar, A.; Shah, A. Central or Axial Atlantoaxial Dislocation as a Cause of Cervical Myelopathy: A Report of Outcome of 5 Cases Treated by Atlantoaxial Stabilization. World Neurosurg. 2019, 121, e908–e916. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Wang, H.; Wang, Y. Morphometric Evaluation of Screw Fixation in Atlas via Posterior Arch and Lateral Mass. Spine 2003, 28, 888–895. [Google Scholar] [CrossRef]
- Zhai, M.Y.; Wang, C.P.; Liu, F. The efficacy of pedicle screw instrument in treatment of irreducible atlantoaxial dislocation. Arch. Orthop. Trauma Surg. 2015, 135, 1193–1199. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, X.; Guo, X. C2 partial transpedicular screw technique for atlantoaxial dislocation with high-riding vertebral artery: A technique note with case series. Clin. Neurol. Neurosurg. 2021, 200, 106403. [Google Scholar] [CrossRef] [PubMed]
- Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloy 2017, 5, 286–312. [Google Scholar] [CrossRef]
- Schaller, B.; Saulacic, N.; Imwinkelried, T. In vivo degradation of magnesium plate/screw osteosynthesis implant systems: Soft and hard tissue response in a calvarial model in miniature pigs. J. Craniomaxillofac. Surg. 2016, 44, 309–317. [Google Scholar] [CrossRef]
- Zreiqat, H.; Howlett, C.; Zannettino, A. Mechanisms of magnesium-stimulated adhesion ofosteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. A 2010, 62, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Zai, W.; Zhang, X.; Su, Y. Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy. Surf. Coat. Technol. 2020, 397, 125919. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z. In vitro biodegradation behavior of magnesium and magnesium alloy. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wang, T.; Kuhlmann, J. In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor. Acta Biomater. 2016, 36, 361–368. [Google Scholar] [CrossRef]
- Kaesel, V.; Tai, P.T.; Bach, F.W. Approach to Control the Corrosion of Magnesium by Alloying. In Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; p. 534. [Google Scholar] [CrossRef]
- Xu, R.; Wu, G.; Yang, X. Controllable degradation of biomedical magnesium by chromium and oxygen dual ion implantation. Mater. Lett. 2011, 65, 2171–2173. [Google Scholar] [CrossRef]
- Witte, F.; Kaese, V.; Haferkamp, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563. [Google Scholar] [CrossRef]
- Song, G. Recent Progress in Corrosion and Protection of Magnesium Alloys. Adv. Eng. Mater. 2005, 7, 563–586. [Google Scholar] [CrossRef]
- Jin, Y.; Blawert, C.; Yang, H. Microstructure-corrosion behaviour relationship of micro-alloyed Mg-0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu. Mater. Des. 2020, 195, 108980. [Google Scholar] [CrossRef]
- Saberi, A.; Bakhsheshi-Rad, H.R.; Ismail, A.F. The Effect of Co-Encapsulated GO-Cu Nanofillers on Mechanical Properties, Cell Response, and Antibacterial Activities of Mg-Zn Composite. Metals 2022, 12, 207. [Google Scholar] [CrossRef]
- Al-Buainain, M.; Shunmugasamy, V.C.; Usman, C.A. Influence of Microstructure on the Mechanical and Corrosion Response of a Friction Stir-Extruded WE43 Magnesium Rod. Metals 2023, 13, 191. [Google Scholar] [CrossRef]
- Liu, J.; Yin, B.; Song, F. Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications. J. Magnes. Alloy, 2022; in press. [Google Scholar] [CrossRef]
- Jo, J.H.; Kang, B.G.; Shin, K.S. Hydroxyapatite coating on magnesium with MgF(2) interlayer for enhanced corrosion resistance and biocompatibility. J. Mater. Sci. Mater. Med. 2011, 22, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, Z.; Guan, S. Degradation of Mg-Zn-Y-Nd alloy intestinal stent and its effect on the growth of intestinal endothelial tissue in rabbit model. J. Magnes. Alloy 2022, 10, 2208–2219. [Google Scholar] [CrossRef]
- Lü, Z.; Zhou, J.; Sun, Z.M. Effect of rare earth elements on the structures and mechanical properties of magnesium alloys. Chin. Sci. Bull. 2013, 58, 816–820. [Google Scholar] [CrossRef]
- Gusieva, K.; Davies, C.; Scully, J. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev. 2014, 60, 169–194. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, K.; Xie, H. Characteristics of Cervical Sagittal Alignment at Different C0-C2 Correcting Angles in Fusion Treatment of Atlantoaxial Dislocations. World Neurosurg. 2019, 124, e119–e124. [Google Scholar] [CrossRef]
- Chaya, A.; Yoshizawa, S.; Verdelis, K. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015, 18, 262–269. [Google Scholar] [CrossRef]
- Janning, C.; Willbold, E.; Vogt, C. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010, 6, 1861–1868. [Google Scholar] [CrossRef]
- Bushinsky, A.D. Metabolic alkalosis decreases bone calcium efflux by suppressing osteoclasts and stimulating osteoblasts. Am. J. Physiol. 1996, 1, 216–222. [Google Scholar] [CrossRef]
- Rude, R.K.; Gruber, H.E.; Wei, L.Y. Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcif. Tissue Int. 2003, 72, 32–41. [Google Scholar] [CrossRef]
- Rude, R.K.; Gruber, H.E.; Norton, H.J. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos. Int. 2006, 17, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, G.; Zhai, Z. Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicrob. Agents Chemother. 2014, 58, 7586–7591. [Google Scholar] [CrossRef] [PubMed]
- Shafyra, S.; Nazim, E.M.; Ngadiman, N.H.A. Comparative Study on the Microstructure and Biodegradation Behavior of Commercialized Pure Mg and Mg-1.0Ca-0.5Sr Alloy in 27 mM HCO3−-SBF: The Influence of the pH Regulation Treatments. Metals 2023, 13, 136. [Google Scholar] [CrossRef]
Parts | Materials | Elastic Modulus/MPa | Poisson’s Ratio | Mass Density/(g·cm−3) |
---|---|---|---|---|
Screw frame | WE43 magnesium alloy | 44,200 | 0.27 | 1.87 |
Atlantoaxial spine | Cortical bone | 17,000 | 0.30 | 1.75 |
Test block | Polyurethane | 34 | 0.20 | 0.18 |
Y | Zr | Gd | Nb | Gu | Ni | Fe | Mg |
---|---|---|---|---|---|---|---|
4.05 | 0.52 | 1.17 | 2.47 | 0.013 | 0.001 | 0.001 | Bal. |
NaCl | KCl | CaCl2 | NaHCO3 | MgSO4·7H2O | Na2HPO4·12H2O | KH2PO4 | Glucose |
---|---|---|---|---|---|---|---|
8.00 | 0.40 | 0.14 | 0.35 | 0.20 | 0.06 | 0.06 | 1.00 |
Sample | Average H2 Generation Rate /(mm3·h−1) | W0 /g | W1 /g | 14 d Corrosion Rate /(mg·cm−2·day−1) |
---|---|---|---|---|
#1 | 0.0490 | 0.3687 | 0.3480 | 0.3674 |
#2 | 0.0494 | 0.3693 | 0.3424 | 0.4774 |
#3 | 0.0667 | 0.3680 | 0.3374 | 0.5431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Cui, H.; Guo, X.; Bu, C. Design and Characterization of Mg Alloy Pedicle Screws for Atlantoaxial Fixation. Metals 2023, 13, 352. https://doi.org/10.3390/met13020352
Zhao Y, Cui H, Guo X, Bu C. Design and Characterization of Mg Alloy Pedicle Screws for Atlantoaxial Fixation. Metals. 2023; 13(2):352. https://doi.org/10.3390/met13020352
Chicago/Turabian StyleZhao, Yunchuan, Haipo Cui, Xudong Guo, and Chaohui Bu. 2023. "Design and Characterization of Mg Alloy Pedicle Screws for Atlantoaxial Fixation" Metals 13, no. 2: 352. https://doi.org/10.3390/met13020352
APA StyleZhao, Y., Cui, H., Guo, X., & Bu, C. (2023). Design and Characterization of Mg Alloy Pedicle Screws for Atlantoaxial Fixation. Metals, 13(2), 352. https://doi.org/10.3390/met13020352