Effect of the Synthesis Route on the Microstructure of HfxTi(1−x)NbVZr Refractory High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure
3.2. Microstructure
3.3. Thermodynamic Modeling
3.3.1. Non-Equilibrium Solidification
3.3.2. Equilibrium Phase Diagrams
4. Conclusions
- (1)
- The dendritic microstructures seen in arc-melting were replaced by an acicular structure upon induction-melting. As expected, changing the synthesis routes allowed the modification of the microstructure.
- (2)
- In all the synthesized alloys, a BCC phase was present with the cell parameter ranging from 3.311 Å to 3.392 Å. The arc-melted alloys with a low Ti concentration (x ≤ 0.25) exhibited an additional cubic C15 phase (a = 7.376 to 7.460 Å), whereas a hexagonal C14 phase (with a = 5.326 to 5.319 Å and c = 8.619 to 8.561 Å) was detected in the induction-melted alloys (x = 0 to 0.75).
- (3)
- The effect of Ti substitution by Hf was explained by the equilibrium phase diagram calculations. The calculations confirmed that Ti increased the stability of the BCC phase, whereas Hf enhanced phase separation, resulting in Laves phases formation.
- (4)
- The Scheil–Gulliver model and the lever rule were applied to simulate the non-equilibrium solidification of the arc-melted alloys (e.g., the fast cooling justifying the non-equilibrium state), and equilibrium solidification for induction-melting (e.g., the slower cooling inducing a close to equilibrium state). For the arc-melted alloys, the thermodynamic calculations successfully predicted the formation of a primary BCC and C15 phases for low Ti concentrations (HfNbVZr) and a single BCC phase in alloys with high Ti concentrations (TiNbVZr). However, there was a discrepancy in predicting the phase formation using the induction-melting method since the calculation predicted the formation of BCC, C15 and HCP phases upon cooling, while experimentally a BCC and hexagonal C14 were present, suggesting the need to improve the database.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Gorsse, S.; Miracle, D.B.; Senkov, O.N. Mapping the world of complex concentrated alloys. Acta Mater. 2017, 135, 177–187. [Google Scholar] [CrossRef]
- Gorsse, S.; Couzinié, J.P.; Miracle, D.B. From high-entropy alloys to complex concentrated alloys. Comptes Rendus Phys. 2018, 19, 721–736. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Zlotea, C.; Bouzidi, A.; Montero, J.; Ek, G.; Sahlberg, M. Compositional effects on the hydrogen storage properties in a series of refractory high entropy alloys. Front. Energy Res. 2022, 10, 991447. [Google Scholar] [CrossRef]
- Yu, Z.; Yan, Y.; Qiang, J.; Gao, W.; Wang, X.; Liu, X.; Du, W. Microstructure evolution and compressive property variation of AlxCoCrFeNi high entropy alloys produced by directional solidification. Intermetallics 2023, 152, 107749. [Google Scholar] [CrossRef]
- Bhattacharjee, P.P.; Sathiaraj, G.D.; Zaid, M.; Gatti, J.R.; Lee, C.; Tsai, C.; Yeh, J. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 2014, 587, 544–552. [Google Scholar] [CrossRef]
- Floriano, R.; Zepon, G.; Edalati, K.; Mohammadi, A. Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy. Int. J. Hydrog. Energy 2021, 46, 23757–23766. [Google Scholar] [CrossRef]
- Edalati, P.; Floriano, R.; Mohammadi, A.; Li, Y.; Zepon, G.; Li, H.W.; Edalati, K. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Scr. Mater. 2020, 178, 387–390. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Xiang, S.; Luan, H.; Wu, J.; Yao, K.F.; Li, J.; Liu, X.; Tian, Y.; Mao, W.; Bai, H.; Le, G.; et al. Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique. J. Alloys Compd. 2019, 773, 387–392. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J.; Couzinie, J.P. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Xing, Y.; Li, C.J.; Mu, Y.K.; Jia, Y.D.; Song, K.K.; Tan, J.; Wang, G.; Zhang, Z.Q.; Yi, J.H.; Eckert, J. Strengthening and deformation mechanism of high-strength CrMnFeCoNi high entropy alloy prepared by powder metallurgy. J. Mater. Sci. Technol. 2023, 132, 119–131. [Google Scholar] [CrossRef]
- Fazakas, E.; Zadorozhnyy, V.; Varga, L.K.; Inoue, A.; Louzguine-Luzgin, D.V.; Tian, F.; Vitos, L. Experimental and theoretical study of Ti20Zr20Hf 20Nb20X20 (X = v or Cr) refractory high-entropy alloys. Int. J. Refract. Met. Hard Mater. 2014, 47, 131–138. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C.; Miracle, D.B. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Mater. 2013, 61, 1545–1557. [Google Scholar] [CrossRef]
- Strozi, R.B.; Leiva, D.R.; Zepon, G.; Botta, W.J.; Huot, J. Effects of the chromium content in (Tivnb)100−xcrx body-centered cubic high entropy alloys designed for hydrogen storage applications. Energies 2021, 14, 3068. [Google Scholar] [CrossRef]
- Sleiman, S.; Huot, J. Microstructure and First Hydrogenation Properties of TiHfZrNb1−xV1+x Alloy for x = 0, 0.1, 0.2, 0.4, 0.6 and 1. Molecules. 2022, 27, 1054. [Google Scholar] [CrossRef]
- Montero, J.; Zlotea, C.; Ek, G.; Crivello, J.C.; Laversenne, L.; Sahlberg, M. TiVZrNb Multi-Principal-Element Alloy: Synthesis Optimization, Structural, and Hydrogen Sorption Properties. Molecules 2019, 24, 2799. [Google Scholar] [CrossRef]
- Montero, J.; Ek, G.; Laversenne, L.; Nassif, V.; Sahlberg, M.; Zlotea, C. How 10 at% al addition in the ti-v-zr-nb high-entropy alloy changes hydrogen sorption properties. Molecules 2021, 26, 2470. [Google Scholar] [CrossRef]
- Ek, G.; Nygård, M.M.; Pavan, A.F.; Montero, J.; Henry, P.F.; Sørby, M.H.; Witman, M.; Stavila, V.; Zlotea, C.; Hauback, B.C.; et al. Elucidating the Effects of the Composition on Hydrogen Sorption in TiVZrNbHf-Based High-Entropy Alloys. Cite This Inorg. Chem. 2021, 60, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Zlotea, C.; Sow, M.A.; Ek, G.; Couzinié, J.P.; Perrière, L.; Guillot, I.; Bourgon, J.; Møller, K.T.; Jensen, T.R.; Akiba, E.; et al. Hydrogen sorption in TiZrNbHfTa high entropy alloy. J. Alloys Compd. 2019, 775, 667–674. [Google Scholar] [CrossRef]
- Sahlberg, M.; Karlsson, D.; Zlotea, C.; Jansson, U. Superior hydrogen storage in high entropy alloys. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Scheil, E. Bemerkungen zur Schichtkristallbildung. Int. J. Mater. Res. 1942, 34, 70–72. [Google Scholar] [CrossRef]
- Gulliver, G.H. The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 1915, 13, 263–291. [Google Scholar]
- Pacheco, V.; Lindwall, G.; Karlsson, D.; Cedervall, J.; Fritze, S.; Ek, G.; Berastegui, P.; Sahlberg, M.; Jansson, U. Thermal Stability of the HfNbTiVZr High-Entropy Alloy. Inorg. Chem. 2019, 58, 811–820. [Google Scholar] [CrossRef]
- Tong, C.J.; Chen, Y.L.; Chen, S.K.; Yeh, J.W.; Shun, T.T.; Tsau, C.H.; Lin, S.J.; Chang, S.Y. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2005, 36, 881–893. [Google Scholar] [CrossRef]
- Nygård, M.M.; Ek, G.; Karlsson, D.; Sørby, M.H.; Sahlberg, M.; Hauback, B.C. Counting electrons—A new approach to tailor the hydrogen sorption properties of high-entropy alloys. Acta Mater. 2019, 175, 121–129. [Google Scholar] [CrossRef]
- Senkov, O.; Gorsse, S.; Wheeler, R.; Payton, E.; Miracle, D.B. Effect of Re on the Microstructure and Mechanical Properties of NbTiZr and TaTiZr Equiatomic Alloys. Metals 2021, 11, 1819. [Google Scholar] [CrossRef]
Alloy HfxNbTi(1−x)VZr | Arc-Melted | Induction-Melted | Annealed (600 °C for 1 Month) | |||
---|---|---|---|---|---|---|
Phase abundance | Lattice parameter (nm) | Phase abundance | Lattice parameter (nm) | Phase abundance | Lattice parameter (nm) | |
x = 0 (NbTiVZr) | 100% BCC, a = 0.3311 (2) | 94% BCC1, a = 0.3310 (1) 6% BCC2, a = 0.3463 (2) | 59% BCC1, a = 0.3271 (3) 22% BCC2, a = 0.3464 (2) 19% unknown | |||
x = 0.25 (Hf0.25NbTi0.75VZr) | 100% BCC, a = 0.3334 (3) | 89% BCC, a = 0.3335 (3) 11% C14, a = 0.5276 (4), c = 0.8642 (11) | - | |||
x = 0.50 Hf0.5NbTi0.5VZr | 100% BCC, a = 0.3356 (2) | 51% BCC, a = 0.3326 (1) 49% C14, a = 0.5326 (2), c = 0.8619 (5) | - | |||
x = 0.75 (Hf0.75NbTi0.25VZr) | 87% BCC, a = 0.3371 (2) 13% C15, a = 0.7376 (4) | 54% BCC, a = 0.3420 (2) 46% C14, a = 0.5319 (2), c = 0.8561 (7) | 27% BCC, a = 0.3400 (3) 51% C14, a = 0.5356 (5), c = 0.8641 (3) 22% HCP, a = 0.3211 (2) c = 0.5104 (2) | |||
x = 1 (HfNbVZr) | 85% BCC, a = 0.3392 (6) 15% C15, a = 0.746 (5) | 45% BCC, a = 0.3454 (2) 55% C14, a = 0.5312 (3), c = 0.8561 (8) | - |
Condition | Phase | Hf | Nb | Ti | V | Zr |
---|---|---|---|---|---|---|
Arc-melted | x = 0 (NbTiVZr) | |||||
Gray matrix (BCC) | 0 | 23 | 24 | 27 | 25 | |
x = 0.25 (Hf0.25NbTi0.75VZr) | ||||||
Gray matrix (BCC) | 5 | 27 | 19 | 27 | 22 | |
x = 0.5 (Hf0.5NbTi0.5VZr) | ||||||
Bright dendrites (BCC) | 11 | 29 | 13 | 24 | 22 | |
Dark regions | 10 | 22 | 13 | 30 | 25 | |
x = 0.75 (Hf0.75NbTi0.25VZr) | ||||||
Bright dendrites (BCC) | 16 | 26 | 6 | 27 | 24 | |
Dark regions (C15 Laves) | 13 | 17 | 4 | 45 | 21 | |
x = 1 (HfNbVZr) | ||||||
Bright dendrites (BCC) | 23 | 28 | 0 | 23 | 25 | |
Dark regions (C15 Laves) | 15 | 18 | 0 | 46 | 19 | |
Induction-melted | x = 0 (NbTiVZr) | |||||
Gray matrix (BCC1) | 0 | 18 | 25 | 33 | 23 | |
Bright regions (BCC2) | 0 | 18 | 26 | 25 | 30 | |
x = 0.25 (Hf0.25NbTi0.75VZr) | ||||||
Gray matrix (BCC) | 5 | 21 | 26 | 16 | 31 | |
Dark particles (C14 Laves) | 5 | 16 | 9 | 47 | 22 | |
x = 0.5 (Hf0.5NbTi0.5VZr) | ||||||
Gray matrix (BCC) | 11 | 26 | 16 | 21 | 26 | |
Dark particles (C14 Laves) | 10 | 17 | 5 | 50 | 18 | |
x = 0.75 (Hf0.75NbTi0.25VZr) | ||||||
Gray matrix (BCC) | 17 | 29 | 10 | 15 | 28 | |
Dark particles (C14 Laves) | 13 | 19 | 3 | 51 | 15 | |
x = 1 (HfNbVZr) | ||||||
Gray matrix (BCC) | 25 | 32 | 0 | 15 | 29 | |
Dark particles (C14 Laves) | 15 | 17 | 0 | 46 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, M.; Gorsse, S.; Huot, J.; Bobet, J.L. Effect of the Synthesis Route on the Microstructure of HfxTi(1−x)NbVZr Refractory High-Entropy Alloys. Metals 2023, 13, 343. https://doi.org/10.3390/met13020343
Moussa M, Gorsse S, Huot J, Bobet JL. Effect of the Synthesis Route on the Microstructure of HfxTi(1−x)NbVZr Refractory High-Entropy Alloys. Metals. 2023; 13(2):343. https://doi.org/10.3390/met13020343
Chicago/Turabian StyleMoussa, Maria, Stéphane Gorsse, Jacques Huot, and Jean Louis Bobet. 2023. "Effect of the Synthesis Route on the Microstructure of HfxTi(1−x)NbVZr Refractory High-Entropy Alloys" Metals 13, no. 2: 343. https://doi.org/10.3390/met13020343