Strain Rate Effect on the Thermomechanical Behavior of NiTi Shape Memory Alloys: A Literature Review
Abstract
:1. Introduction
2. Experimental Observations
2.1. Strain Rate Effect under Uniaxial Loads
- Basically, at a very low strain rate , phase transformation heat dissipates sufficiently to the environment, thus the temperature change of the material can be ignored [11,12,13]. The martensitic transformation stress is therefore not sensitive to the strain rate in this isothermal process, which is shown as a stress platform in Figure 2.
- In a relatively low strain range, , the influence of the latent heat, dissipation energy, and elastic heat gradually grows, leading to small temperature variations of the material [11,14,15,16]. The strain rate influences the temperature field and brings an increase in the martensitic transformation stress.
- As the strain rate climbs to a medium range of , the transformation stress is nearly unchanged [17,18,19,20,21]. This is because the temperature evolution is insensitive to the strain rate as the deformation process is adiabatic. The heat produced, with amount proportional to the volume of transformed martensite, is totally used to warm up the sample, while the rate-sensitive heat produced by the transformation-induced plasticity strain is negligible.
- A sudden rise of the transformation stress appears at strain rates between , where the dislocation drag effect becomes more significant and the flow stress is more sensitive to the strain rate [22,23,24,25,65,66,67,68,69]. The overall stress level increases remarkably as well as the transformation stress.
2.1.1. Less Than 10−4 s−1
2.1.2. From 10−4 s−1 to 10−1 s−1
2.1.3. From 10−1 s−1 to 103 s−1
2.1.4. From 103 s−1 to 104 s−1
2.1.5. Greater Than 104 s−1
2.2. Strain Rate Effect in Different Loading Modes
2.2.1. Shear
2.2.2. Indentation
2.2.3. Cyclic Loading
2.3. Dependence of the Strain Rate Effect on Microstructure
2.3.1. General SMAs
- R-phase
- b.
- Precipitated phase
- c.
- Grain size
2.3.2. Porous SMAs and Composites
3. Models
3.1. Thermal Source Models
3.1.1. Framework of the Potential Method and the Temperature Evolution Equation
3.1.2. Components Related to the Thermal Sources
- a.
- Latent heat
- b.
- Irreversible dissipation heat
- c.
- Elastic heat
- d.
- Heat flux and external heat source
3.1.3. Simulation Results with the Thermal Source Model
3.2. Thermal Kinetic Models
4. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tušek, J.; Engelbrecht, K.; Mikkelsen, L.P.; Pryds, N. Elastocaloric effect of Ni-Ti wire for application in a cooling device. J. Appl. Phys. 2015, 117, 124901. [Google Scholar] [CrossRef] [Green Version]
- Salvado, F.C.; Teixeira-Dias, F.; Walley, S.M.; Lea, L.J.; Cardoso, J.B. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals. Prog. Mater. Sci. 2017, 88, 186–231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Li, Y.; Zhang, C.; Li, S.; Wu, E.; Li, W.; Li, L. The elastocaloric effect of Ni50.8Ti49.2shape memory alloys. J. Phys. D Appl. Phys. 2018, 51, 135303. [Google Scholar] [CrossRef]
- Chien, P.Y.; Martins, J.N.R.; Walsh, L.J.; Peters, O.A. Mechanical and Metallurgical Characterization of Nickel-Titanium Wire Types for Rotary Endodontic Instrument Manufacture. Materials 2022, 15, 8367. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, L.; Menna, C.; Asprone, D.; Ferraioli, M.; Auricchio, F. Chapter 21—Buildings. In Shape Memory Alloy Engineering, 2nd ed.; Concilio, A., Antonucci, V., Auricchio, F., Lecce, L., Sacco, E., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2021; pp. 689–729. [Google Scholar] [CrossRef]
- Corbi, O. Shape memory alloys and their application in structural oscillations attenuation. Simul. Model. Pract. Theory 2003, 11, 387–402. [Google Scholar] [CrossRef]
- Song, G.; Ma, N.; Li, H.N. Applications of shape memory alloys in civil structures. Eng. Struct. 2006, 28, 1266–1274. [Google Scholar] [CrossRef]
- Torra, V.; Isalgue, A.; Martorell, F.; Terriault, P.; Lovey, F.C. Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Eng. Struct. 2007, 29, 1889–1902. [Google Scholar] [CrossRef]
- Dieng, L.; Helbert, G.; Chirani, S.A.; Lecompte, T.; Pilvin, P. Use of Shape Memory Alloys damper device to mitigate vibration amplitudes of bridge cables. Eng. Struct. 2013, 56, 1547–1556. [Google Scholar] [CrossRef]
- Torra, V.; Auguet, C.; Isalgue, A.; Carreras, G.; Terriault, P.; Lovey, F.C. Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: A mesoscopic and macroscopic experimental analysis with numerical simulations. Eng. Struct. 2013, 49, 43–57. [Google Scholar] [CrossRef]
- Shaw, J.A.; Kyriakides, S. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 1995, 43, 1243–1281. [Google Scholar] [CrossRef]
- Lin, P.-h.; Tobushi, H.; Tanaka, K.; Hattori, T.; Ikai, A. Influence of strain rate on deformation properties of TiNi shape memory alloy. JSME Int. J. Ser. A Mech. Mater. Eng. 1996, 39, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Tobushi, H.; Shimeno, Y.; Hachisuka, T.; Tanaka, K. Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mech. Mater. 1998, 30, 141–150. [Google Scholar] [CrossRef]
- Tobushi, H.; Okumura, K.; Endo, M.; Tanaka, K. Deformation behavior of TiNi shape memory alloy under strain- or stress-controlled conditions. In Smart Structures and Materials 2002: Active Materials: Behavior and Mechanics, Proceedings of the SPIE’s 9th Annual International Symposium on Smart Structures and Materials, San Diego, CA, USA, 11 July 2002; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2002; pp. 374–385. [Google Scholar]
- Bruhns, O.T. Some Remarks on Rate-Sensitivity of NiTi Shape Memory Alloys. Int. J. Mod. Phys. B 2008, 22, 5406–5412. [Google Scholar] [CrossRef]
- Grabe, C.; Bruhns, O.T. On the viscous and strain rate dependent behavior of polycrystalline NiTi. Int. J. Solids Struct. 2008, 45, 1876–1895. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.W.; Wu, Q.; Kang, J.H.; Winfree, N.A. Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001–750 s−1. Int. J. Solids Struct. 2001, 38, 8989–8998. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Choi, J.Y. Thermomechanical response of an Ni–Ti–Cr shape-memory alloy at low and high strain rates. Philos. Mag. 2006, 86, 1173–1187. [Google Scholar] [CrossRef]
- Shen, L.; Liu, Y.; Hui, M. Dynamic thermo-mechanical behaviors of SME TiNi alloys subjected to shock loading. Acta Mech. Sin. 2020, 36, 1336–1349. [Google Scholar] [CrossRef]
- Zurbitu, J.; Castillo, G.; Urrutibeascoa, I.; Aurrekoetxea, J. Low-energy tensile-impact behavior of superelastic NiTi shape memory alloy wires. Mech. Mater. 2009, 41, 1050–1058. [Google Scholar] [CrossRef]
- Zurbitu, J.; Kustov, S.; Castillo, G.; Aretxabaleta, L.; Cesari, E.; Aurrekoetxea, J. Instrumented tensile–impact test method for shape memory alloy wires. Mater. Sci. Eng. A 2009, 524, 108–111. [Google Scholar] [CrossRef]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and kinetics of slip. Progr. Mater. Sci. 1975, 19, 308. [Google Scholar]
- Nemat-Nasser, S.; Choi, J.-Y.; Guo, W.-G.; Isaacs, J.B. Very high strain-rate response of a NiTi shape-memory alloy. Mech. Mater. 2005, 37, 287–298. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Choi, J.Y. Strain rate dependence of deformation mechanisms in a Ni–Ti–Cr shape-memory alloy. Acta Mater. 2005, 53, 449–454. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Su, Y.; Guo, W.-G.; Isaacs, J. Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy. J. Mech. Phys. Solids 2005, 53, 2320–2346. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Luo, B.; Bland, S.N.; Tan, F.; Zhao, F.; Zhao, J.; Sun, C.; Liu, C. Mechanical response of near-equiatomic NiTi alloy at dynamic high pressure and strain rate. J. Alloys Compd. 2018, 731, 569–576. [Google Scholar] [CrossRef]
- Guo, W.G.; Su, J.; Su, Y.; Chu, S.Y. On phase transition velocities of NiTi shape memory alloys. J. Alloys Compd. 2010, 501, 70–76. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Huang, Y.; Ye, X.; Li, J.; Zhang, C.; Li, H.; Pang, B.; Tian, Y.; Huang, C.; et al. Strain rate dependent mechanical response for monoclinic NiTi shape memory alloy: Micromechanical decomposition and model validation via neutron diffraction. Mater. Des. 2020, 191, 108656. [Google Scholar] [CrossRef]
- Gadaj, S.; Nowacki, W.; Pieczyska, E.; Tobushi, H. Temperature measurement as a new technique applied to the phase transformation study in a TiNi shape memory alloy subjected to tension. Arch. Metall. Mater. 2005, 50, 661–674. [Google Scholar]
- Saletti, D.; Pattofatto, S.; Zhao, H. Measurement of phase transformation properties under moderate impact tensile loading in a NiTi alloy. Mech. Mater. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, P.; He, Y.; Yu, T.; Sun, Q. Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. Int. J. Mech. Sci. 2010, 52, 1660–1670. [Google Scholar] [CrossRef]
- Qiu, Y.; Young, M.L.; Nie, X. High Strain Rate Compression of Martensitic NiTi Shape Memory Alloys. Shape Mem. Superelasticity 2015, 1, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Manach, P.-Y.; Favier, D. Shear and tensile thermomechanical behavior of near equiatomic NiTi alloy. Mater. Sci. Eng. A 1997, 222, 45–57. [Google Scholar] [CrossRef]
- Huang, H.; Durand, B.; Sun, Q.P.; Zhao, H. An experimental study of NiTi alloy under shear loading over a large range of strain rates. Int. J. Impact Eng. 2017, 108, 402–413. [Google Scholar] [CrossRef]
- Amini, A.; He, Y.; Sun, Q. Loading rate dependency of maximum nanoindentation depth in nano-grained NiTi shape memory alloy. Mater. Lett. 2011, 65, 464–466. [Google Scholar] [CrossRef]
- Shahirnia, M.; Farhat, Z.; Jarjoura, G. Effects of temperature and loading rate on the deformation characteristics of superelastic TiNi shape memory alloys under localized compressive loads. Mater. Sci. Eng. A 2011, 530, 628–632. [Google Scholar] [CrossRef]
- Kan, Q.; Yu, C.; Kang, G.; Li, J.; Yan, W. Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mech. Mater. 2016, 97, 48–58. [Google Scholar] [CrossRef]
- Zurbitu, J.; Santamarta, R.; Picornell, C.; Gan, W.M.; Brokmeier, H.G.; Aurrekoetxea, J. Impact fatigue behavior of superelastic NiTi shape memory alloy wires. Mater. Sci. Eng. A 2010, 528, 764–769. [Google Scholar] [CrossRef]
- Helbert, G.; Saint-Sulpice, L.; Arbab Chirani, S.; Dieng, L.; Lecompte, T.; Calloch, S.; Pilvin, P. Experimental characterisation of three-phase NiTi wires under tension. Mech. Mater. 2014, 79, 85–101. [Google Scholar] [CrossRef]
- Ahadi, A.; Sun, Q. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 2014, 76, 186–197. [Google Scholar] [CrossRef]
- Pappadà, S.; Rametta, R.; Toia, L.; Coda, A.; Fumagalli, L.; Maffezzoli, A. Embedding of Superelastic SMA Wires into Composite Structures: Evaluation of Impact Properties. J. Mater. Eng. Perform. 2009, 18, 522–530. [Google Scholar] [CrossRef]
- Fan, Q.C.; Zhang, Y.H.; Wang, Y.Y.; Sun, M.Y.; Meng, Y.T.; Huang, S.K.; Wen, Y.H. Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Mater. Sci. Eng. A 2017, 700, 269–280. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, Y.; Young, M.L. Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys deformed at high strain rate. Mater. Sci. Eng. A 2021, 804, 140753. [Google Scholar] [CrossRef]
- Tobushi, H.; Takata, K.; Shimeno, Y.; Nowacki, W.K.; Gadaj, S.P. Influence of strain rate on superelastic behaviour of TiNi shape memory alloy. J. Mater. Des. Appl. 1999, 213, 93–102. [Google Scholar] [CrossRef]
- Seelecke, S. Modeling the dynamic behavior of shape memory alloys. Int. J. Non-Linear Mech. 2002, 37, 1363–1374. [Google Scholar] [CrossRef]
- He, Y.J.; Sun, Q.P. On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. Int. J. Solids Struct. 2011, 48, 1688–1695. [Google Scholar] [CrossRef]
- Yang, S.Y.; Dui, G.S. Temperature analysis of one-dimensional NiTi shape memory alloys under different loading rates and boundary conditions. Int. J. Solids Struct. 2013, 50, 3254–3265. [Google Scholar] [CrossRef] [Green Version]
- Azadi, B.; Rajapakse, R.K.N.D.; Maijer, D.M. One-dimensional thermomechanical model for dynamic pseudoelastic response of shape memory alloys. Smart Mater. Struct. 2006, 15, 996–1008. [Google Scholar] [CrossRef]
- Yang, S.; Dui, G.; Liu, B. Modeling of rate-dependent damping capacity of one-dimensional superelastic shape memory alloys. J. Intell. Mater. Syst. Struct. 2012, 24, 431–440. [Google Scholar] [CrossRef]
- Berti, V.; Fabrizio, M.; Grandi, D. Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys. J. Math. Phys. 2010, 51, 062901. [Google Scholar] [CrossRef]
- Grandi, D.; Maraldi, M.; Molari, L. A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response. Acta Mater. 2012, 60, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Dhote, R.P.; Gomez, H.; Melnik, R.N.V.; Zu, J. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects. Comput. Phys. Commun. 2015, 192, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Wan, J.; Zuo, X.; Chen, N.; Zhang, J.; Rong, Y. Three-dimensional, non-isothermal phase-field modeling of thermally and stress-induced martensitic transformations in shape memory alloys. Int. J. Solids Struct. 2017, 109, 1–11. [Google Scholar] [CrossRef]
- Xie, X.; Kang, G.; Kan, Q.; Yu, C.; Peng, Q. Phase field modeling to transformation induced plasticity in super-elastic NiTi shape memory alloy single crystal. Model. Simul. Mater. Sci. Eng. 2019, 27, 045001. [Google Scholar] [CrossRef]
- Xie, X.; Kang, G.; Kan, Q.; Yu, C. Phase-field theory based finite element simulation on thermo-mechanical cyclic deformation of polycrystalline super-elastic NiTi shape memory alloy. Comput. Mater. Sci. 2020, 184, 109899. [Google Scholar] [CrossRef]
- Yu, H.; Young, M.L. One-dimensional thermomechanical model for high strain rate deformation of austenitic shape memory alloys. J. Alloys Compd. 2017, 710, 858–868. [Google Scholar] [CrossRef]
- Yu, H.; Young, M.L. Three-dimensional modeling for deformation of austenitic NiTi shape memory alloys under high strain rate. Smart Mater. Struct. 2018, 27, 015031. [Google Scholar] [CrossRef]
- Yu, H.; Young, M.L. Effect of temperature on high strain rate deformation of austenitic shape memory alloys by phenomenological modeling. J. Alloys Compd. 2019, 797, 194–204. [Google Scholar] [CrossRef]
- Nnamchi, P.; Younes, A.; González, S. A review on shape memory metallic alloys and their critical stress for twinning. Intermetallics 2019, 105, 61–78. [Google Scholar] [CrossRef]
- Šittner, P.; Sedlák, P.; Seiner, H.; Sedmák, P.; Pilch, J.; Delville, R.; Heller, L.; Kadeřávek, L. On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling. Prog. Mater. Sci. 2018, 98, 249–298. [Google Scholar] [CrossRef]
- Cisse, C.; Zaki, W.; Ben Zineb, T. A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 2016, 76, 244–284. [Google Scholar] [CrossRef]
- Chen, W.; Song, B. Temperature dependence of a NiTi shape memory alloy's superelastic behavior at a high strain rate. J. Mech. Mater. Struct. 2006, 1, 339–356. [Google Scholar] [CrossRef] [Green Version]
- Adharapurapu, R.R.; Jiang, F.; Vecchio, K.S.; Gray, G.T. Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension–compression asymmetry. Acta Mater. 2006, 54, 4609–4620. [Google Scholar] [CrossRef]
- Elibol, C.; Wagner, M.F.X. Strain rate effects on the localization of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression–shear. Mater. Sci. Eng. A 2015, 643, 194–202. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Yong Choi, J.; Guo, W.-G.; Isaacs, J.B.; Taya, M. High Strain-Rate, Small Strain Response of a NiTi Shape-Memory Alloy. J. Eng. Mater. Technol. 2005, 127, 83–89. [Google Scholar] [CrossRef]
- Kapoor, R.; Nemat-Nasser, S. Comparison between high and low strain-rate deformation of tantalum. Metall. Mater. Trans. A 2000, 31, 815–823. [Google Scholar] [CrossRef]
- Austin, R.A.; McDowell, D.L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int. J. Plast. 2011, 27, 1–24. [Google Scholar] [CrossRef]
- Shahba, A.; Ghosh, S. Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part I: A unified constitutive model and flow rule. Int. J. Plast. 2016, 87, 48–68. [Google Scholar] [CrossRef]
- Luscher, D.J.; Addessio, F.L.; Cawkwell, M.J.; Ramos, K.J. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine. J. Mech. Phys. Solids 2017, 98, 63–86. [Google Scholar] [CrossRef] [Green Version]
- Dayananda, G.N.; Rao, M.S. Effect of strain rate on properties of superelastic NiTi thin wires. Mater. Sci. Eng. A 2008, 486, 96–103. [Google Scholar] [CrossRef]
- Boyce, B.L.; Crenshaw, T.B. Servohydraulic Methods for Mechanical Testing in the Sub-Hopkinson Rate Regime up to Strain Rates of 500 1/s; Sandia National Laboratories: Albuquerque, NM, USA, 2005. [Google Scholar]
- Xu, R.; Cui, L.; Zheng, Y. The dynamic impact behavior of NiTi alloy. Mater. Sci. Eng. A 2006, 438–440, 571–574. [Google Scholar] [CrossRef]
- Tang, B.; Tang, B.; Han, F.; Yang, G.; Li, J. Influence of strain rate on stress induced martensitic transformation in β solution treated TB8 alloy. J. Alloys Compd. 2013, 565, 1–5. [Google Scholar] [CrossRef]
- Niitsu, K.; Date, H.; Kainuma, R. Thermal activation of stress-induced martensitic transformation in Ni-rich Ti-Ni alloys. Scr. Mater. 2020, 186, 263–267. [Google Scholar] [CrossRef]
- Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading. J. Synchrotron Radiat. 2015, 22, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Jiang, S.; Zhang, Y. Phase Transformation, Twinning, and Detwinning of NiTi Shape-Memory Alloy Subject to a Shock Wave Based on Molecular-Dynamics Simulation. Materials 2018, 11, 2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdandoost, F.; Mirzaeifar, R. Stress Wave and Phase Transformation Propagation at the Atomistic Scale in NiTi Shape Memory Alloys Subjected to Shock Loadings. Shape Mem. Superelasticity 2018, 4, 435–449. [Google Scholar] [CrossRef]
- Yin, Q.; Wu, X.; Huang, C.; Wang, X.; Wei, Y. Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression. Philos. Mag. 2015, 95, 2491–2512. [Google Scholar] [CrossRef] [Green Version]
- Ko, W.-S.; Maisel, S.B.; Grabowski, B.; Jeon, J.B.; Neugebauer, J. Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater. 2017, 123, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Yazdandoost, F.; Sadeghi, O.; Bakhtiari-Nejad, M.; Elnahhas, A.; Shahab, S.; Mirzaeifar, R. Energy dissipation of shock-generated stress waves through phase transformation and plastic deformation in NiTi alloys. Mech. Mater. 2019, 137, 103090. [Google Scholar] [CrossRef]
- Millett, J.C.F.; Bourne, N.K.; Gray, G.T. Behavior of the shape memory alloy NiTi during one-dimensional shock loading. J. Appl. Phys. 2002, 92, 3107–3110. [Google Scholar] [CrossRef]
- Farhat, Z.; Jarjoura, G.; Shahirnia, M. Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy. Metall. Mater. Trans. A 2013, 44, 3544–3551. [Google Scholar] [CrossRef]
- Yu, C.; Kang, G.; Kan, Q. A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: One-dimensional model. Mech. Mater. 2014, 78, 1–10. [Google Scholar] [CrossRef]
- Miyazaki, S. Thermal and Stress Cycling Effects and Fatigue Properties of Ni-Ti Alloys. In Engineering Aspects of Shape Memory Alloys; Duerig, T.W., Melton, K.N., Stöckel, D., Wayman, C.M., Eds.; Butterworth-Heinemann: Boston, MA, USA, 1990; pp. 394–413. [Google Scholar] [CrossRef]
- Lin, P.H.; Tobushi, H.; Tanaka, K.; Hattori, T.; Makita, M. Pseudoelastic Behaviour of TiNi Shape Memory Alloy Subjected to Strain Variations. J. Intell. Mater. Syst. Struct. 1994, 5, 694–701. [Google Scholar] [CrossRef]
- Fitzka, M.; Rennhofer, H.; Catoor, D.; Reiterer, M.; Lichtenegger, H.; Checchia, S.; di Michiel, M.; Irrasch, D.; Gruenewald, T.A.; Mayer, H. High Speed In Situ Synchrotron Observation of Cyclic Deformation and Phase Transformation of Superelastic Nitinol at Ultrasonic Frequency. Exp. Mech. 2019, 60, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Bragov, A.M.; Danilov, A.N.; Konstantinov, A.Y.; Lomunov, A.K.; Motorin, A.S.; Razov, A.I. Mechanical and structural aspects of high-strain-rate deformation of NiTi alloy. Phys. Met. Metallogr. 2015, 116, 385–392. [Google Scholar] [CrossRef]
- Kaya, I.; Karaca, H.E.; Nagasako, M.; Kainuma, R. Effects of aging temperature and aging time on the mechanism of martensitic transformation in nickel-rich NiTi shape memory alloys. Mater. Charact. 2020, 159, 110034. [Google Scholar] [CrossRef]
- Adharapurapu, R.R.; Jiang, F.; Bingert, J.F.; Vecchio, K.S. Influence of cold work and texture on the high-strain-rate response of Nitinol. Mater. Sci. Eng. A 2010, 527, 5255–5267. [Google Scholar] [CrossRef]
- Liang, C.; Rogers, C.A. One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials. J. Intell. Mater. Syst. Struct. 1990, 1, 207–234. [Google Scholar] [CrossRef]
- Boyd, J.G.; Lagoudas, D.C. A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int. J. Plast. 1996, 12, 805–842. [Google Scholar] [CrossRef]
- Boyd, J.G.; Lagoudas, D.C. A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material. Int. J. Plast. 1996, 12, 843–873. [Google Scholar] [CrossRef]
- Leclercq, S.; Lexcellent, C. A general macroscopic description of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 1996, 44, 953–980. [Google Scholar] [CrossRef]
- Lagoudas, D.C. Shape Memory Alloys: Modeling and Engineering Applications; Springer: New York, NY, USA, 2008. [Google Scholar]
- Wang, J.; Moumni, Z.; Zhang, W.; Xu, Y.; Zaki, W. A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation. Smart Mater. Struct. 2017, 26, 065006. [Google Scholar] [CrossRef]
- Kadkhodaei, M.; Rajapakse, R.K.N.D.; Mahzoon, M.; Salimi, M. Modeling of the cyclic thermomechanical response of SMA wires at different strain rates. Smart Mater. Struct. 2007, 16, 2091–2101. [Google Scholar] [CrossRef]
- Sadjadpour, A.; Bhattacharya, K. A micromechanics inspired constitutive model for shape-memory alloys: The one-dimensional case. Smart Mater. Struct. 2007, 16, S51–S62. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Zhang, Y. A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence. Smart Mater. Struct. 2007, 16, 1696–1707. [Google Scholar] [CrossRef]
- Motahari, S.A.; Ghassemieh, M. Multilinear one-dimensional shape memory material model for use in structural engineering applications. Eng. Struct. 2007, 29, 904–913. [Google Scholar] [CrossRef]
- Ahmadian, H.; Hatefi Ardakani, S.; Mohammadi, S. Strain-rate sensitivity of unstable localized phase transformation phenomenon in shape memory alloys using a non-local model. Int. J. Solids Struct. 2015, 63, 167–183. [Google Scholar] [CrossRef]
- Lagoudas, D.C.; Ravi-Chandar, K.; Sarh, K.; Popov, P. Dynamic loading of polycrystalline shape memory alloy rods. Mech. Mater. 2003, 35, 689–716. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shan, L.; Shan, J.; Hui, M. Experimental study on temperature evolution and strain rate effect on phase transformation of TiNi shape memory alloy under shock loading. Int. J. Mech. Sci. 2019, 156, 342–354. [Google Scholar] [CrossRef]
- Shen, L.; Liu, Y. Temperature evolution associated with dynamic phase transformation in shape-memory TiNi alloys. Phase Transit. 2019, 92, 755–771. [Google Scholar] [CrossRef]
- Xu, L.; Solomou, A.; Baxevanis, T.; Lagoudas, D. Finite strain constitutive modeling for shape memory alloys considering transformation-induced plasticity and two-way shape memory effect. Int. J. Solids Struct. 2021, 221, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Heller, L.; Šittner, P.; Sedlák, P.; Seiner, H.; Tyc, O.; Kadeřávek, L.; Sedmák, P.; Vronka, M. Beyond the strain recoverability of martensitic transformation in NiTi. Int. J. Plast. 2019, 116, 232–264. [Google Scholar] [CrossRef]
- Hiroyuki, N.; Ying, Z.; Minoru, T.; Weinong, W.C.; Yuta, U.; Shunji, S. Strain-rate effects on TiNi and TiNiCu shape memory alloys. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 16 May 2005; pp. 355–363. [Google Scholar]
- Auricchio, F.; Fugazza, D.; DesRoches, R. A 1D rate-dependent viscous constitutive model for superelastic shape-memory alloys: Formulation and comparison with experimental data. Smart Mater. Struct. 2007, 16, S39–S50. [Google Scholar] [CrossRef]
- Hartl, D.J.; Chatzigeorgiou, G.; Lagoudas, D.C. Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plast. 2010, 26, 1485–1507. [Google Scholar] [CrossRef]
Strain Rate | Mechanisms | Experimental Observations (Uniaxial Loading, with Increasing Strain Rate) | Models | |||
---|---|---|---|---|---|---|
Range | Rank | Temperature Rise | Transformation Stress | Transformation Mode | ||
Very low | Isothermal process; heat by transformation dissipates to the environment sufficiently | Unnoticeable | Nearly unchanged | Martensite nucleates at few locations and then extends to all fields | Thermal source | |
Low | Transition from isothermal to adiabatic; part of heat by transformation is left in the specimen | Increases | Increases gradually | Number of nucleation sites increases and transformation domains propagate in a parallel mode | Thermal source | |
Medium | Adiabatic process; heat by transformation is fully applied to warm up the specimen | Reaches the maximum | Nearly unchanged | Large martensite zones nucleate at loading ends and spread towards the specimen center | Thermal source | |
High | Adiabatic process; resistance of the phase interface increases dramatically due to the drag effect | Reaches the maximum | Increases dramatically | - | Thermal kinetic | |
Very high | Adiabatic process; austenite yields without transformation | - | - | - | Plasticity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Luo, J.; Kuang, W.; Jin, M.; Liu, G.; Jin, X.; Shen, Y. Strain Rate Effect on the Thermomechanical Behavior of NiTi Shape Memory Alloys: A Literature Review. Metals 2023, 13, 58. https://doi.org/10.3390/met13010058
Wang Z, Luo J, Kuang W, Jin M, Liu G, Jin X, Shen Y. Strain Rate Effect on the Thermomechanical Behavior of NiTi Shape Memory Alloys: A Literature Review. Metals. 2023; 13(1):58. https://doi.org/10.3390/met13010058
Chicago/Turabian StyleWang, Zhengxiong, Jiangyi Luo, Wangwang Kuang, Mingjiang Jin, Guisen Liu, Xuejun Jin, and Yao Shen. 2023. "Strain Rate Effect on the Thermomechanical Behavior of NiTi Shape Memory Alloys: A Literature Review" Metals 13, no. 1: 58. https://doi.org/10.3390/met13010058