Effect of Copper on Microstructure and Corrosion Resistance of Hot Rolled 301 Stainless Steel
Abstract
:1. Introduction
2. Experimental Materials and Methods
3. Results and Analysis
3.1. Hot Rolled Microstructure
3.2. Recrystallised Microstructure
3.3. Microhardness
3.4. Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mont Anstahl Special Profiles in Steel. Available online: https://www.montanstahl.com (accessed on 20 October 2022).
- Stainless Structurals Asia. Available online: https://www.montanstahl.com/contact/singapore (accessed on 6 December 2022).
- Li, S.; Zhang, L.; Zhao, O. Testing, modelling and design of hot-rolled stainless steel channel sections under combined compression and minor-axis bending moment. Thin. Wall. Struct. 2022, 172, 108836. [Google Scholar] [CrossRef]
- Gardner, L. Stability and design of stainless steel structures–Review and outlook. Thin. Wall. Struct. 2019, 141, 208–216. [Google Scholar] [CrossRef]
- Eskandari, M.; Najafizadeh, A.; Kermanpur, A.; Karimi, M. Potential application of nanocrystalline 301 austenitic stainless steel in lightweight vehicle structures. Mater. Des. 2009, 30, 3869–3872. [Google Scholar] [CrossRef]
- Uksza, J.; Rumiński, M.; Ratuszek, W.; Blicharski, M. Texture evolution and variations of α-phase volume fraction in cold-rolled AISI 301 steel strip. J. Mater. Process. Technol. 2006, 177, 555–560. [Google Scholar] [CrossRef]
- Li, N.; Jia, R.; Zhang, H.; Sha, W.; Li, Y.; Jiang, Z. In-situ Cu coating on steel surface after oxidizing at high temperature. Materials 2019, 12, 3536. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Yan, L.; Wang, S.; Wang, C.; Zhang, H.; Ai, F.; Jiang, Z. Corrosion Behavior of Copper Bearing Steels and the Derived In-Situ Coating. Metals 2021, 11, 1462. [Google Scholar] [CrossRef]
- Zhang, T.L.; Yu, H.; Li, Z.X.; Kou, S.; Kim, H.J.; Tillmann, W. Progress on effects of alloying elements on bainite formation and strength and toughness of high strength steel weld metal. Mater. Res. Express. 2021, 8, 032002. [Google Scholar] [CrossRef]
- Wu, W.; Dai, Z.Y.; Liu, Z.Y.; Liu, C. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion. Corros. Sci. 2021, 183, 109353. [Google Scholar] [CrossRef]
- Oguzie, E.E.; Li, J.B.; Liu, Y.Q.; Chen, D.M.; Li, Y.; Yang, K.; Wang, F.H. The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim. Acta 2010, 55, 5028–5035. [Google Scholar] [CrossRef]
- Ujiro, T.; Satoh, S.; Staehle, R.W.; Smyrl, W.H. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corros. Sci. 2001, 43, 2185–2200. [Google Scholar] [CrossRef]
- Hermas, A.A.; Ogura, K.; Takagi, S.; Adachi, T. Effects of Alloying Additions on Corrosion and Passivation Behaviors of Type 304 Stainless Steel. Corrosion 1995, 51, 3–10. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, A.E.; Arrabal, R. Pitting corrosion behaviour of austenitic stainless steels with Cu and Sn additions. Corros. Sci. 2007, 49, 510–525. [Google Scholar] [CrossRef]
- Li, B.B.; Qu, H.P.; Lang, Y.P.; Feng, H.Q.; Chen, Q.M.; Chen, H.T. Copper alloying content effect on pitting resistance of modified 00Cr20Ni18Mo6CuN super austenitic stainless steels. Corros. Sci. 2020, 173, 108791. [Google Scholar] [CrossRef]
- Hou, Y.; Cai, S.; Sapanathan, T.; Dumon, A.; Rachik, M. Micromechanical modeling of the effect of phase distribution topology on the plastic behavior of dual-phase steels. Comput. Mater. Sci. 2019, 158, 243–254. [Google Scholar] [CrossRef]
- Das, Y.B.; Forsey, A.N.; Simm, T.H.; Perkins, K.M.; Fitzpatrick, M.E.; Gungor, S.; Moat, R.J. In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel. Mater. Des. 2016, 112, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Xi, T.; Babar Shahzad, M.; Xu, D.; Zhao, J.; Yang, C.; Qi, M.; Yang, K. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study. Mater. Sci. Eng. A 2016, 675, 243–252. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, S.J.; Moon, J.; Jang, J.H.; Kim, S.D. Characterization of microstructural evolution in austenitic Fe-Mn-Al-C lightweight steels with Cr content. Mater. Charact. 2020, 170, 110717. [Google Scholar] [CrossRef]
- Wang, J.; Guo, W.; Sun, H.; Li, H.; Gou, H.; Zhang, J. Plastic deformation behaviors and hardening mechanism of M7C3 carbide. Mater. Sci. Eng. A 2016, 662, 88–94. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y. In-situ observation of interaction between precipitates and austenite during δ→γ phase transformations. Mater. Sci. Technol. 2019, 35, 536–543. [Google Scholar] [CrossRef]
- Curtze, S.; Kuokkala, V.T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010, 58, 5129–5141. [Google Scholar] [CrossRef]
- Kim, B.; Lee, S.G.; Kim, D.W.; Jo, Y.H.; Bae, J.; Sohn, S.S.; Lee, S. Effects of Ni and Cu addition on cryogenic-temperature tensile and Charpy impact properties in austenitic 22Mn-0.45C–1Al steels. J. Alloys Compd. 2020, 815, 152407. [Google Scholar] [CrossRef]
- Curtze, S.; Kuokkala, V.T.; Oikari, A.; Talonen, J.; Hänninen, H. Thermodynamic modeling of the stacking fault energy of austenitic steels. Acta Mater. 2011, 59, 1068–1076. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Lee, S.J.; Cooman, B.C.D. Effect of Cu addition on the mechanical behavior of austenitic twinning-induced plasticity steel. Scripta Mater. 2011, 65, 1073–1076. [Google Scholar] [CrossRef]
- Dong, Z.H.; Li, W.; Chai, G.C.; Vitos, L. Strong temperature –Dependence of Ni -alloying influence on the stacking fault energy in austenitic stainless steel. Scripta Mater. 2020, 178, 438–441. [Google Scholar] [CrossRef]
- Remy, L.; Pineau, A. Twinning and strain-induced F.C.C. → H.C.P. transformation in the Fe-Mn-Cr-C system. Mater. Sci. Eng. 1977, 28, 99–107. [Google Scholar] [CrossRef]
- Yasnii, P.V.; Marushchak, P.O.; Hlad’o, V.B.; Ya Baran, D. Correlation of the microdislocation parameters with the hardness of plastically deformed heat-resistant steels. Mater. Sci. 2008, 44, 194–200. [Google Scholar] [CrossRef]
Sample No. | C | Cr | Ni | Mn | Cu | Si | Fe |
---|---|---|---|---|---|---|---|
301ASS | 0.104 | 16.069 | 6.018 | 1.295 | 0.009 | 0.370 | Bal |
301ASS-0.4Cu | 0.091 | 16.800 | 6.460 | 1.050 | 0.443 | 0.400 | Bal |
301ASS-1.1Cu | 0.119 | 16.378 | 6.194 | 1.388 | 1.090 | 0.381 | Bal |
Specimen | /(A·cm−2) | /(V SCE) | /V | /(A·cm−2) | /V | |
---|---|---|---|---|---|---|
301ASS | 3.707 × 10−6 | −0.453 | −0.333 | 6.761 × 10−6 | 0.283 | 0.026 |
301ASS-0.4Cu | 2.626 × 10−6 | −0.443 | −0.323 | 5.093 × 10−6 | 0.218 | 0.018 |
301ASS-1.1Cu | 2.999 × 10−6 | −0.448 | −0.328 | 5.521 × 10−6 | 0.169 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Yan, H.; Wang, X.; Xia, L.; Zhu, Y.; Li, Y.; Jiang, Z. Effect of Copper on Microstructure and Corrosion Resistance of Hot Rolled 301 Stainless Steel. Metals 2023, 13, 170. https://doi.org/10.3390/met13010170
Li N, Yan H, Wang X, Xia L, Zhu Y, Li Y, Jiang Z. Effect of Copper on Microstructure and Corrosion Resistance of Hot Rolled 301 Stainless Steel. Metals. 2023; 13(1):170. https://doi.org/10.3390/met13010170
Chicago/Turabian StyleLi, Na, Hangxin Yan, Xuyuan Wang, Lei Xia, Yuchuan Zhu, Yan Li, and Zhengyi Jiang. 2023. "Effect of Copper on Microstructure and Corrosion Resistance of Hot Rolled 301 Stainless Steel" Metals 13, no. 1: 170. https://doi.org/10.3390/met13010170
APA StyleLi, N., Yan, H., Wang, X., Xia, L., Zhu, Y., Li, Y., & Jiang, Z. (2023). Effect of Copper on Microstructure and Corrosion Resistance of Hot Rolled 301 Stainless Steel. Metals, 13(1), 170. https://doi.org/10.3390/met13010170