Role of Carbon Content on Microstructure Evolution and Impact Toughness in Coarse-Grained Heat-Affected Zone of High-Strength Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Impact Toughness and Fractographs
3.2. Microstructure Evolution
3.3. Phase Transformation Mechanism and Correlation with Impact Toughness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, B.B.; Wang, Z.Q.; Wang, X.L.; Xu, W.S.; Shang, C.J.; Misra, R.D.K. Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs. Mater. Sci. Eng. A 2019, 759, 430–436. [Google Scholar] [CrossRef]
- Wu, B.B.; Wang, Z.Q.; Yu, Y.S.; Wang, X.L.; Shang, C.J.; Misra, R.D.K. Thermo dynamic basis of twin-related variant pair in high strength low alloy steel. Scr. Mater. 2019, 170, 43–47. [Google Scholar] [CrossRef]
- Yu, Y.S.; Wang, Z.Q.; Wu, B.B.; Zhao, J.X.; Wang, X.L.; Guo, H.; Shang, C.J. Tailoring variant pairing to enhance impact toughness in high-strength low-alloy steels via trace carbon addition. Acta Metall. Sin-Engl. 2021, 34, 755–764. [Google Scholar] [CrossRef]
- Lee, S.; Yu, J.H.; Park, S.H.; Shim, D.S.; Choi, Y.S. Effect of carbon content in steel powder feedstock on impact toughness and microstructure of additively manufactured cast iron by directed energy deposition. J. Mater. Res. Technol. 2021, 15, 189–198. [Google Scholar] [CrossRef]
- Koczurkiewicz, B. The effect of time and temperature variations during isothermal annealing on the mechanical properties of high carbon bainitic steel. Mater. Sci. Forum. 2012, 706–709, 2158–2163. [Google Scholar] [CrossRef]
- Dyja, H.; Koczurkiewicz, B.; Knapiński, M. The analyze of phase transformation in ultra fine grained construction steel. Mater. Sci. Forum. 2010, 638–642, 2610–2615. [Google Scholar] [CrossRef]
- Hidalgo, J.; Santofimia, M.J. Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite. Metall. Mater. Trans. A 2016, 47, 5288–5301. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Ma, X.P.; Wang, Z.Q.; Subramanian, S.V.; Xie, Z.J.; Shang, C.J.; Li, X.C. Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel. Mater. Charact. 2019, 149, 26–33. [Google Scholar] [CrossRef]
- Kumar, S.; Kasyap, P.; Pandey, C.; Basu, B.; Nath, S.K. Role of heat inputs on microstructure and mechanical properties in coarse-grained heat-affected zone of bainitic steel. CIRP J. Manuf. Sci. Tec. 2021, 35, 724–734. [Google Scholar] [CrossRef]
- Qi, X.N.; Huan, P.C.; Wang, X.N.; Liu, Z.G.; Shen, X.J.; Gao, Y.; Di, H.S. Effect of root welding heat input on microstructure evolution and fracture mechanism in intercritically reheat-coarse grained heat-affected zone of X80 pipeline steel. Mater. Today. Commun. 2022, 31, 103413. [Google Scholar]
- Wang, X.L.; Xie, Z.J.; Wang, Z.Q.; Yu, Y.S.; Wu, L.Q.; Shang, C.J. Crystallographic study on microstructure and impact toughness of coarse grained heat affected zone of ultra-high strength steel. Mater. Lett. 2022, 323, 132552. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, Z.Q.; Dong, L.L.; Shang, C.J.; Ma, X.P.; Subramanian, S.V. New insights in to the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection. Mater. Sci. Eng. A 2017, 704, 448–458. [Google Scholar] [CrossRef]
- You, Y.; Shang, C.J.; Nie, W.J.; Subramanian, S.V. Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content. Mater. Sci. Eng. A 2012, 558, 692–701. [Google Scholar] [CrossRef]
- Lan, L.Y.; Kong, X.W.; Qiu, C.L. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles. Mater. Charact. 2015, 105, 95–103. [Google Scholar] [CrossRef]
- Gourgues, A.-F.; Flower, H.M.; Lindley, T.C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures. Mater. Sci. Technol. 2000, 16, 26–40. [Google Scholar] [CrossRef]
- Ghosh, A.; Kundu, S.; Chakrabarti, D. Effect of crystallographic texture on the cleavage fracture mechanism and effective grain size of ferritic steel. Scr. Mater. 2014, 81, 8–11. [Google Scholar] [CrossRef]
- Takayama, N.; Miyamoto, G.; Furuhara, T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel. Acta Mater. 2012, 60, 2387–2396. [Google Scholar] [CrossRef]
- Chakrabarti, D.; Strangwood, M.; Davis, C.L. Effect of bimodal grain size distribution on scatter in toughness. Metall. Mater. Trans. A 2009, 40, 780–795. [Google Scholar] [CrossRef]
- Chhajed, B.; Mishra, K.; Singh, K.; Singh, A. Effect of prior austenite grain size on the tensile properties and fracture toughness of nano-structured bainite. Mater. Charact. 2022, 192, 112214. [Google Scholar] [CrossRef]
- Li, X.D.; Ma, X.P.; Subramanian, S.V.; Misra, R.D.K.; Shang, C.J. Structure-property-fracture mechanism correlation in heat-affected zone of X100 ferrite-bainite pipeline steel. Metall. Mater. Trans. E 2015, 2E, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.P.; Li, X.C.; Shang, C.J.; Wang, Q.C.; Sun, W.H.; Li, G.B.; Guo, F.J.; Xia, D.X. Study on microstructure and impact toughness of laser hybrid welding joints. Mater. Sci. Technol. 2023, 39, 117–127. [Google Scholar] [CrossRef]
Steel | C | Si | Mn | P | S | Cr + Ni + Cu + Mo | B | Ceq |
---|---|---|---|---|---|---|---|---|
0.04C | 0.04 | 0.21 | 1.35 | 0.011 | 0.012 | 2.72 | 0.0020 | 0.60 |
0.08C | 0.08 | 0.23 | 1.34 | 0.009 | 0.010 | 2.65 | 0.0011 | 0.63 |
0.12C | 0.12 | 0.22 | 1.28 | 0.008 | 0.010 | 2.69 | 0.0016 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xie, Z.; Su, W.; Shang, C. Role of Carbon Content on Microstructure Evolution and Impact Toughness in Coarse-Grained Heat-Affected Zone of High-Strength Steel. Metals 2023, 13, 106. https://doi.org/10.3390/met13010106
Wang X, Xie Z, Su W, Shang C. Role of Carbon Content on Microstructure Evolution and Impact Toughness in Coarse-Grained Heat-Affected Zone of High-Strength Steel. Metals. 2023; 13(1):106. https://doi.org/10.3390/met13010106
Chicago/Turabian StyleWang, Xuelin, Zhenjia Xie, Wenjuan Su, and Chengjia Shang. 2023. "Role of Carbon Content on Microstructure Evolution and Impact Toughness in Coarse-Grained Heat-Affected Zone of High-Strength Steel" Metals 13, no. 1: 106. https://doi.org/10.3390/met13010106
APA StyleWang, X., Xie, Z., Su, W., & Shang, C. (2023). Role of Carbon Content on Microstructure Evolution and Impact Toughness in Coarse-Grained Heat-Affected Zone of High-Strength Steel. Metals, 13(1), 106. https://doi.org/10.3390/met13010106