Modeling of Tensile Test Results for Low Alloy Steels by Linear Regression and Genetic Programming Taking into Account the Non-Metallic Inclusions
Abstract
:1. Introduction
- -
- taking of samples,
- -
- preparation of test pieces (usually machining),
- -
- pulling the test piece by tensile force until the breakage,
- -
- obtaining mechanical properties based on measurements and calculations (e.g., tensile strength, yield strength, percentage elongation, percentage reduction area).
- -
- Mechanical properties obtained by tensile testing mostly depend on:
- -
- material chemical composition,
- -
- material macrostructure (e.g., segregations, sheets and strips) and microstructure (e.g., grain size and morphology, content of microstructures),
- -
- sampling (location and orientation of test pieces),
- -
- preparation of test pieces (machining, heat treatment),
- -
- tensile test performance (e.g., equipment, testing speed).
2. Materials and Methods
- -
- A: sulfide type,
- -
- B: alumina type,
- -
- C: silicate type and
- -
- D: globular oxide type.
- -
- Carbon (Carbon), silicon (Si), manganese (Mn), silicon (Si), phosphorus (P), sulfur (S), chromium (Cr), molybdenum (Mo), nickel (Ni) and aluminium (Al) content in weight%.
- -
- Severity number for sulfide type of inclusions (A) determined according to standard ASTM E45, method A. Based on mentioned standard the inclusions can subcategorized into heavy and thin describing their thickness. In the research only maximal severity number was used for categorization of inclusions size.
- -
- Severity number for alumina type of inclusions (B) determined according to standard ASTM E45, method A.
- -
- Severity number for silicate type of inclusions (C) determined according to standard ASTM E45, method A.
- -
- Severity number for globular type of inclusions (D) determined according to standard ASTM E45, method A.
- -
- Tensile (Rm) and yield (Rp0.2) strength, percentage elongation (Elongation) and reduction area (Reduction).
Steel Grade | Number of Cases | wt % C | wt % Si | wt % Mn | wt % P | wt % S | wt % Cr | wt % Mo | wt % Ni | wt % Al | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Av | Std | Av | Std | Av | Std | Av | Std | Av | Std | Av | Std | Av | Std | Av | Std | Av | Std | ||
15CrNi6 | 2 | 0.170 | 0.000 | 0.310 | 0.000 | 0.550 | 0.000 | 0.009 | 0.000 | 0.008 | 0.000 | 1.570 | 0.000 | 0.080 | 0.000 | 1.520 | 0.000 | 0.007 | 0.000 |
16MnCr5 | 1 | 0.160 | / | 0.280 | / | 1.100 | / | 0.012 | / | 0.021 | / | 0.890 | / | 0.060 | / | 0.150 | / | 0.018 | / |
16MnCrS5 | 13 | 0.171 | 0.014 | 0.268 | 0.006 | 1.115 | 0.052 | 0.011 | 0.001 | 0.025 | 0.004 | 0.975 | 0.056 | 0.033 | 0.010 | 0.107 | 0.026 | 0.018 | 0.002 |
20CrMo5 | 15 | 0.199 | 0.003 | 0.237 | 0.009 | 1.030 | 0.004 | 0.014 | 0.001 | 0.021 | 0.001 | 1.180 | 0.008 | 0.210 | 0.004 | 0.201 | 0.031 | 0.016 | 0.000 |
20MnCr5 | 31 | 0.176 | 0.008 | 0.288 | 0.012 | 0.903 | 0.014 | 0.013 | 0.001 | 0.007 | 0.001 | 1.065 | 0.008 | 0.021 | 0.003 | 0.075 | 0.008 | 0.017 | 0.002 |
20MnCrS5 | 7 | 0.191 | 0.004 | 0.240 | 0.000 | 1.280 | 0.026 | 0.014 | 0.001 | 0.023 | 0.000 | 1.177 | 0.008 | 0.040 | 0.000 | 0.123 | 0.008 | 0.019 | 0.000 |
20MnV6 | 31 | 0.170 | 0.000 | 0.157 | 0.071 | 1.546 | 0.015 | 0.012 | 0.002 | 0.023 | 0.001 | 0.194 | 0.015 | 0.034 | 0.015 | 0.170 | 0.000 | 0.022 | 0.003 |
28MnCrB7 | 10 | 0.288 | 0.008 | 0.158 | 0.006 | 1.260 | 0.028 | 0.013 | 0.004 | 0.009 | 0.003 | 0.397 | 0.015 | 0.047 | 0.013 | 0.133 | 0.022 | 0.018 | 0.001 |
30MnVS6 | 60 | 0.287 | 0.009 | 0.606 | 0.028 | 1.429 | 0.019 | 0.012 | 0.002 | 0.029 | 0.004 | 0.166 | 0.028 | 0.029 | 0.006 | 0.082 | 0.021 | 0.014 | 0.002 |
38MnVS6 | 5 | 0.372 | 0.004 | 0.530 | 0.000 | 1.298 | 0.004 | 0.012 | 0.002 | 0.047 | 0.004 | 0.132 | 0.018 | 0.028 | 0.004 | 0.082 | 0.018 | 0.010 | 0.001 |
C22 | 14 | 0.167 | 0.009 | 0.096 | 0.008 | 0.318 | 0.006 | 0.008 | 0.002 | 0.006 | 0.002 | 0.121 | 0.026 | 0.021 | 0.004 | 0.074 | 0.025 | 0.023 | 0.004 |
C35S | 3 | 0.390 | 0.000 | 0.270 | 0.000 | 0.660 | 0.000 | 0.013 | 0.000 | 0.024 | 0.000 | 0.200 | 0.000 | 0.030 | 0.000 | 0.080 | 0.000 | 0.021 | 0.000 |
C45 | 14 | 0.460 | 0.004 | 0.255 | 0.014 | 0.631 | 0.003 | 0.011 | 0.001 | 0.026 | 0.004 | 0.239 | 0.029 | 0.055 | 0.013 | 0.144 | 0.015 | 0.019 | 0.001 |
C45S | 33 | 0.452 | 0.004 | 0.291 | 0.020 | 0.628 | 0.004 | 0.010 | 0.001 | 0.026 | 0.002 | 0.182 | 0.004 | 0.026 | 0.012 | 0.088 | 0.017 | 0.021 | 0.004 |
C60S | 110 | 0.583 | 0.005 | 0.241 | 0.024 | 0.712 | 0.014 | 0.010 | 0.002 | 0.027 | 0.002 | 0.126 | 0.021 | 0.022 | 0.004 | 0.081 | 0.019 | 0.019 | 0.004 |
P460NH | 31 | 0.185 | 0.006 | 0.094 | 0.028 | 1.554 | 0.034 | 0.011 | 0.002 | 0.013 | 0.001 | 0.126 | 0.008 | 0.027 | 0.010 | 0.178 | 0.008 | 0.021 | 0.001 |
S355J2 | 92 | 0.178 | 0.016 | 0.317 | 0.106 | 1.316 | 0.080 | 0.010 | 0.002 | 0.007 | 0.002 | 0.137 | 0.041 | 0.028 | 0.005 | 0.078 | 0.015 | 0.027 | 0.002 |
3. Modeling of Tensile, Yield Strength, Percentage Elongation and Reduction Area
3.1. Modeling of Tensile, Yield Strength, Percentage Elongation and Reduction Area Using Linear Regression
3.2. Modeling of Tensile, Yield Strength, Percentage Elongation and Reduction Area Using Genetic Programming
- -
- size of the population of organisms: 1000,
- -
- maximum number of generations: 100,
- -
- reproduction probability: 0.4,
- -
- crossover probability: 0.6,
- -
- maximum permissible depth in the creation of the population: 5,
- -
- maximum permissible depth after the operation of crossover of two organisms: 30 and
- -
- smallest permissible depth of organisms in generating new organisms: 2.
4. Modeling Results and Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, G.-X.; Wei, X.-L.; Bai, C.; Miao, D.-J.; Cao, L.; Li, X.-M. Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting. Nucl. Eng. Technol. 2022, 54, 2376–2385. [Google Scholar] [CrossRef]
- Gong, W.; Jiang, Z.; Zhang, L.; Chen, C.; Dong, Y. Influence of Mg addition on inclusions and mechanical properties of Cr12Mo1V1 steel under high pressure. Mater. Sci. Eng. A 2020, 791, 139410. [Google Scholar] [CrossRef]
- Arreola-Herrera, R.; Cruz-Ramírez, A.; Rivera-Salinas, J.E.; Romero-Serrano, A.; Sánchez-Alvarado, R.G. The effect of non-metallic inclusions on the mechanical properties of 32 CDV 13 steel and their mechanical stress analysis by numerical simulation. Theor. Appl. Fract. Mech. 2018, 94, 134–146. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Q.; Li, C.; Huang, B. Influence of non-metal inclusions on mechanical properties of CLAM steel. Fusion Eng. Des. 2009, 84, 1214–1218. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Zhang, F.; Fu, X.; Li, H.; Yang, C. Experimental and DFT study on cerium inclusions in clean steels. J. Rare Earths 2021, 39, 477–486. [Google Scholar] [CrossRef]
- Wu, M.; Fang, W.; Chen, R.-M.; Jiang, B.; Wang, H.-B.; Liu, Y.-Z.; Liang, H.-L. Mechanical anisotropy and local ductility in transverse tensile deformation in hot rolled steels: The role of MnS inclusions. Mater. Sci. Eng. A 2019, 744, 324–334. [Google Scholar] [CrossRef]
- Qiu, G.-X.; Zhan, D.-P.; Cao, L.; Zhang, H.-S. Effect of zirconium on inclusions and mechanical properties of China low activation martensitic steel. J. Iron Steel Res. Int. 2021, 28, 1168–1179. [Google Scholar] [CrossRef]
- Aydın, E.; Arısoy, C.F.; Sesen, M.K. The Effect of Manganese Sulfide Inclusions and Zirconium Additions on the Mechanical Properties of Heavy Section Cast Steel. Int. J. Met. 2018, 12, 383–395. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, G.; Che, J.; Wang, L.; Xiong, G. Effect of Oxides on Characteristics of MnS and Transverse Mechanical Properties in Commercial Al-Killed Non-Quenched and Tempered Steel. Met. Mater. Int. 2019, 25, 473–486. [Google Scholar] [CrossRef]
- Maisuradze, M.V.; Björk, T. Microstructure and Mechanical Properties of Calcium Treated 42CRMO4 Steel with Improved Machinability. Trans. Indian Inst. Met. 2022, 75, 681–690. [Google Scholar] [CrossRef]
- Qiao, X.; Han, X.; He, Z.; Zhuang, Z.; Yang, X.; Mao, F. Effect of cerium addition on microstructure and mechanical properties of as-cast high grade knives steel. J. Iron Steel Res. Int. 2022, preprint. [Google Scholar] [CrossRef]
- Qiu, G.; Zhan, D.; Li, C.; Yang, Y.; Qi, M.; Jiang, Z.; Zhang, H. Effects of Yttrium and Heat Treatment on the Microstructure and Mechanical Properties of CLAM Steel. J. Mater. Eng. Perform. 2020, 29, 42–52. [Google Scholar] [CrossRef]
- Brytan, Z.; Król, M.; Benedyk, M.; Pakieła, W.; Tański, T.; Dagnaw, M.J.; Snopiński, P.; Pagáč, M.; Czech, A. Microstructural and Mechanical Properties of Novel Co-Free Maraging Steel M789 Prepared by Additive Manufacturing. Materials 2022, 15, 1734. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, D.; Zuo, X.; Liu, L.; Yan, Q. Influence of TiN Inclusions and Segregation on the Delayed Cracking in NM450 Wear-Resistant Steel. Metals 2021, 12, 21. [Google Scholar] [CrossRef]
- Jonšta, P.; Jonšta, Z.; Brožová, S.; Ingaldi, M.; Pietraszek, J.; Klimecka-Tatar, D. The Effect of Rare Earth Metals Alloying on the Internal Quality of Industrially Produced Heavy Steel Forgings. Materials 2021, 14, 5160. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Wang, P.; Zhang, L.; Jiang, Z. Effects of Ce on Microstructure and Mechanical Properties of LDX2101 Duplex Stainless Steel. Metals 2020, 10, 1233. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Z.; He, J.; Zhu, F.; Li, C. Effects of Rare Earth Elements on Microstructure and Mechanical Properties of H13 Die Steel. Metals 2020, 10, 918. [Google Scholar] [CrossRef]
- Ali, M.; Nyo, T.; Kaijalainen, A.; Javaheri, V.; Tervo, H.; Hannula, J.; Somani, M.; Kömi, J. Incompatible effects of B and B + Nb additions and inclusions’ characteristics on the microstructures and mechanical properties of low-carbon steels. Mater. Sci. Eng. A 2021, 819, 141453. [Google Scholar] [CrossRef]
- Gupta, A.; Goyal, S.; Padmanabhan, K.A.; Singh, A.K. Inclusions in steel: Micro–macro modelling approach to analyse the effects of inclusions on the properties of steel. Int. J. Adv. Manuf. Technol. 2015, 77, 565–572. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Kovačič, M.; Župerl, U. Genetic programming in the steelmaking industry. Genet. Program. Evolvable Mach. 2020, 21, 99–128. [Google Scholar] [CrossRef]
- Babič, M.; Marinković, D.; Kovačič, M.; Šter, B.; Calì, M. A New Method of Quantifying the Complexity of Fractal Networks. Fractal Fract. 2022, 6, 282. [Google Scholar] [CrossRef]
- Kovačič, M.; Lešer, B.; Brezocnik, M. Modelling and optimization of sulfur addition during 70MnVS4 steelmaking: An industrial case study. Adv. Prod. Eng. Manag. 2021, 16, 253–261. [Google Scholar] [CrossRef]
- Kovačič, M.; Salihu, S.; Gantar, G.; Župerl, U. Modeling and Optimization of Steel Machinability with Genetic Programming: Industrial Study. Metals 2021, 11, 426. [Google Scholar] [CrossRef]
- Kovačič, M.; Novak, D. Prediction of the chemical non-homogeneity of 30MnVS6 billets with genetic programming. Mater. Teh. 2016, 50, 69–74. [Google Scholar] [CrossRef]
- Da Maia, B.I.; Futami, A.H.; De Oliveira, M.A. Vanadium Alloy Steel DIN 30MnVS6 Applied in Cold Forging Process. ISIJ Int. 2018, 58, 2318–2322. [Google Scholar] [CrossRef]
Steel Grade | Rm [MPA] | Rp0.2 [MPa] | A [%] | Z [%] | ||||
---|---|---|---|---|---|---|---|---|
Av | Std | Av | Std | Av | Std | Av | Std | |
15CrNi6 | 998.50 | 2.12 | 623.50 | 28.99 | 9.05 | 0.21 | 26.05 | 3.46 |
16MnCr5 | 605.00 | / | 364.00 | / | 11.00 | / | 25.00 | / |
16MnCrS5 | 559.54 | 69.67 | 370.23 | 60.73 | 19.40 | 3.57 | 49.66 | 8.47 |
20CrMo5 | 684.80 | 137.10 | 451.00 | 110.54 | 13.46 | 5.12 | 35.41 | 14.49 |
20MnCr5 | 653.29 | 75.79 | 453.13 | 58.35 | 17.55 | 3.53 | 50.83 | 16.55 |
20MnCrS5 | 685.00 | 119.56 | 435.43 | 68.28 | 15.99 | 4.29 | 48.43 | 15.00 |
20MnV6 | 709.74 | 125.16 | 474.39 | 90.46 | 15.79 | 4.84 | 40.31 | 11.56 |
28MnCrB7 | 661.20 | 103.85 | 416.60 | 83.10 | 17.00 | 2.96 | 46.22 | 11.88 |
30MnVS6 | 672.72 | 112.95 | 457.32 | 87.60 | 17.54 | 4.26 | 44.77 | 10.74 |
38MnVS6 | 684.40 | 59.51 | 465.00 | 59.47 | 13.98 | 2.23 | 37.38 | 9.81 |
C22 | 700.86 | 200.85 | 470.07 | 142.41 | 16.38 | 7.64 | 39.09 | 14.59 |
C35S | 633.00 | 52.14 | 404.67 | 24.54 | 18.40 | 3.86 | 45.93 | 16.17 |
C45 | 651.21 | 118.67 | 400.86 | 75.50 | 17.95 | 4.73 | 44.66 | 15.70 |
C45S | 644.18 | 162.35 | 437.12 | 126.09 | 16.92 | 4.97 | 45.07 | 13.11 |
C60S | 665.55 | 134.29 | 432.13 | 86.73 | 16.46 | 4.54 | 43.02 | 13.58 |
P460NH | 654.00 | 72.68 | 457.61 | 70.27 | 16.36 | 3.19 | 47.82 | 10.66 |
S355J2 | 644.28 | 109.22 | 434.92 | 86.15 | 17.75 | 5.00 | 45.14 | 13.52 |
Batch Number | wt % C | wt % Si | wt % Mn | wt % P | wt % S | wt % Cr | wt % Mo | wt % Ni | wt % Al | Severity Number A | Severity Number B | Severity Number C | Severity Number D |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.28 | 0.65 | 1.44 | 0.013 | 0.03 | 0.14 | 0.03 | 0.08 | 0.016 | 0.5 | 1.5 | 1.5 | 0 |
2 | 0.27 | 0.61 | 1.41 | 0.01 | 0.022 | 0.19 | 0.04 | 0.11 | 0.015 | 0.5 | 1.5 | 1.5 | 0 |
3 | 0.29 | 0.65 | 1.43 | 0.013 | 0.029 | 0.15 | 0.03 | 0.12 | 0.017 | 0.5 | 2.5 | 1.5 | 0 |
4 | 0.3 | 0.65 | 1.49 | 0.013 | 0.026 | 0.2 | 0.03 | 0.12 | 0.019 | 0.5 | 2 | 1.5 | 0 |
5 | 0.27 | 0.66 | 1.42 | 0.012 | 0.028 | 0.12 | 0.03 | 0.08 | 0.014 | 0.5 | 2 | 3 | 0 |
Batch Number | Hot Rolled Bar Width [mm] | Hot Rolled Bar Thickness [mm] | Tensile Strength [MPa] | Yield Strength [MPa] | Percentage Elongation [%] | Percentage Reduction [%] |
---|---|---|---|---|---|---|
1 | 60 | 60 | 735 | 512 | 18.9 | 50.0 |
2 | 60 | 60 | 727 | 498 | 17.8 | 47.7 |
3 | 30 | 30 | 783 | 560 | 11.4 | 38.1 |
4 | 60 | 60 | 767 | 534 | 14 | 51.4 |
5 | 32 | 32 | 758 | 523 | 14.7 | 35.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačič, M.; Župerl, U. Modeling of Tensile Test Results for Low Alloy Steels by Linear Regression and Genetic Programming Taking into Account the Non-Metallic Inclusions. Metals 2022, 12, 1343. https://doi.org/10.3390/met12081343
Kovačič M, Župerl U. Modeling of Tensile Test Results for Low Alloy Steels by Linear Regression and Genetic Programming Taking into Account the Non-Metallic Inclusions. Metals. 2022; 12(8):1343. https://doi.org/10.3390/met12081343
Chicago/Turabian StyleKovačič, Miha, and Uroš Župerl. 2022. "Modeling of Tensile Test Results for Low Alloy Steels by Linear Regression and Genetic Programming Taking into Account the Non-Metallic Inclusions" Metals 12, no. 8: 1343. https://doi.org/10.3390/met12081343
APA StyleKovačič, M., & Župerl, U. (2022). Modeling of Tensile Test Results for Low Alloy Steels by Linear Regression and Genetic Programming Taking into Account the Non-Metallic Inclusions. Metals, 12(8), 1343. https://doi.org/10.3390/met12081343