Effect of B2O3 Addition and CaO/Al2O3 Ratios on Melt Structure and Viscosity of CaO–Al2O3-Based Slags
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Details
2.2. Viscosity Measurement
3. Results and Discussion
3.1. Radial Distribution Function (RDF) and Co-Ordination Number (CN) Distribution
3.2. Distribution of Oxygen Types
3.3. Distribution of Qn (Al) Species
3.4. Effect of B2O3 on Viscosity of CaO–Al2O3 Slag
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaefferer, S.; Ohlert, J.; Bleck, W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater. 2004, 52, 2765–2778. [Google Scholar] [CrossRef]
- De Cooman, B.C.; Kwon, O.; Chin, K. State-of-the-knowledge on TWIP steel. Mater. Sci. Technol. 2012, 28, 513–527. [Google Scholar] [CrossRef]
- Moon, K.H.; Park, M.S.; Yoo, S.; Park, J.K.; Cho, J.W.; Shin, G. Molten mold flux technology for continuous casting of the ULC and TWIP steel. In Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing, Waikoloa, HI, USA, 4–9 August 2013; Marquis, F., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Grässel, O.; Krüger, L.; Frommeyer, G.; Meyer, L.W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int. J. Plast. 2000, 16, 1391–1409. [Google Scholar] [CrossRef]
- Lu, B.; Chen, K.; Wang, W.; Jiang, B. Effects of Li2O and Na2O on the crystallization behavior of lime-alumina-based mold flux for casting high-Al steels. Metall. Mater. Trans. B 2014, 45, 1496–1509. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Shao, H. Review of non-reactive CaO–Al2O3-based mold fluxes for casting high-aluminum steel. J. Iron Steel Res. Int. 2019, 26, 336–344. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, T.; Zhu, H.; Yan, Y.; Zhao, Y. Effect of B2O3 and CaF2 on viscosity of ladle refining slag. Adv. Mater. Res. 2011, 295–297, 2647–2650. [Google Scholar] [CrossRef]
- Akberdin, A.; Konurov, U.; Kim, A.; Isagulov, A.; Saitov, R.; Sultangaziyev, R. Viscosity and electric conductivity of melt system of CaO-Al2O3-B2O3. Metalurgija 2016, 55, 313–316. [Google Scholar]
- Huang, X.; Liao, J.; Zheng, K.; Hu, H.; Wang, F.; Zhang, Z. Effect of B2O3 addition on viscosity of mould slag containing low silica content. Ironmak. Steelmak. 2014, 41, 67–74. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Z. Structural roles of boron and silicon in the CaO-SiO2-B2O3 glasses using FTIR, Raman, and NMR spectroscopy. Metall. Mater. Trans. B 2015, 46, 1549–1554. [Google Scholar] [CrossRef]
- Zheng, Q.; Youngman, R.E.; Hogue, C.L.; Mauro, J.C.; Potuzak, M.; Smedskjaer, M.M.; Yue, Y. Structure of boroaluminosilicate glasses: Impact of [Al2O3]/[SiO2] ratio on the structural role of sodium. Phys. Rev. B 2012, 86, 054203. [Google Scholar] [CrossRef]
- Kwinda, T.I.; Koppka, S.; Sander, S.A.H.; Kohns, R.; Enke, D. Effect of Al2O3 on phase separation and microstructure of R2O-B2O3-Al2O3-SiO2 glass system (R = Li, Na). J. Non-Cryst. Solids 2020, 531, 119849. [Google Scholar] [CrossRef]
- Yamashita, H.; Yoshino, H.; Nagata, K.; Inoue, H.; Nakajin, T.; Maekawa, T. Nuclear magnetic resonance studies of alkaline earth phosphosilicate and aluminoborosilicate glasses. J. Non-Cryst. Solids 2000, 270, 48–59. [Google Scholar] [CrossRef]
- Kim, G.H.; Sohn, I. Role of B2O3 on the viscosity and structure in the CaO-Al2O3-Na2O-based system. Metall. Mater. Trans. B 2014, 45, 86–95. [Google Scholar] [CrossRef]
- Shu, Q.; Li, P.; Zhang, X.; Chou, K. Thermodynamics and structure of CaO-Al2O3-3 mass pct B2O3 slag at 1773 K (1500 °C). Metall. Mater. Trans. B 2016, 47, 3527–3532. [Google Scholar] [CrossRef]
- Li, J.; Chou, K.; Shu, Q. Structure and viscosity of CaO-Al2O3-B2O3 based mould fluxes with varying CaO/Al2O3 mass ratios. ISIJ Int. 2020, 60, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Mead, R.N.; Mountjoy, G. A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1−x glasses. J. Phys. Chem. B 2006, 110, 14273–14278. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M. Effect of fluorine on melt structure for CaO-SiO2-CaF2 and CaO-Al2O3-CaF2 by molecular dynamics simulations. ISIJ Int. 2020, 60, 2176–2182. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M. Effect of Na ions on melt structure and viscosity of CaO-SiO2-Na2O by molecular dynamics simulations. ISIJ Int. 2021, 61, 1389–1395. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M. Molecular dynamics simulations of melt structure properties of CaO-Al2O3-Na2O slag. Metall. Mater. Trans. B 2021, 52, 2604–2611. [Google Scholar] [CrossRef]
- Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma, S.; Sun, M.; Wang, Z.; Li, H. Performance and transition mechanism from acidity to basicity of amphoteric oxides (Al2O3 and B2O3) in SiO2-CaO-Al2O3-B2O3 system: A molecular dynamics study. Ceram. Int. 2021, 47, 12252–12260. [Google Scholar] [CrossRef]
- Allibert, M.; Gaye, H.; Geiseler, J.; Janke, D.; Keene, B.J.; Kirner, D.; Kowalski, M.; Lehmann, J.; Mills, K.C.; Neuschütz, D.; et al. Slag Atlas, 2nd ed.; Verlag Stahleisen GmbH: Düsseldorf, Germany, 1995; p. 39. [Google Scholar]
- Cormier, L.; Neuville, D.R.; Calas, G. Structure and properties of low-silica calcium aluminosilicate glasses. J. Non-Cryst. Solids 2000, 274, 110–114. [Google Scholar] [CrossRef]
- Biscoe, J.; Warren, B.E. X-ray diffraction study of soda-boric oxide glass. J. Am. Ceram. Soc. 1938, 21, 287–293. [Google Scholar] [CrossRef]
- Hannon, A.C.; Parker, J.M. The structure of aluminate glasses by neutron diffraction. J. Non-Cryst. Solids 2000, 274, 102–109. [Google Scholar] [CrossRef]
- Tandia, A.; Timofeev, N.T.; Mauro, J.C.; Vargheese, K.D. Defect-mediated self-diffusion in calcium aluminosilicate glasses: A molecular modeling study. J. Non-Cryst. Solids 2011, 357, 1780–1786. [Google Scholar] [CrossRef]
- Stebbins, J.F.; Oglesby, J.V.; Kroeker, S. Oxygen triclusters in crystalline CaAl4O7 (grossite) and in calcium aluminosilicate glasses: 17O NMR. Am. Miner. 2001, 86, 1307–1311. [Google Scholar] [CrossRef]
Pair | Aij/[eV] | ρij/[Å] | Cij/[eV·Å6] |
---|---|---|---|
B-B | 56.25 | 0.16 | 0.00 |
B-Ca | 4306.25 | 0.16 | 0.00 |
B-O | 10,687.5 | 0.165 | 0.00 |
B-Al | 483.25 | 0.16 | 0.00 |
Ca-Ca | 329,051.6 | 0.16 | 4.335 |
Ca-O | 717,827.0 | 0.165 | 8.67 |
Ca-Al | 36,918.57 | 0.16 | 0.00 |
O-O | 1,497,049.0 | 0.17 | 17.34 |
O-Al | 86,057.58 | 0.165 | 0.00 |
Al-Al | 4142.149 | 0.16 | 0.00 |
NO. | C/A Mole Ratio | C–A System | Composition [Mole%/Mass%] | Atomic Number | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CaO | Al2O3 | B2O3 | Ca | Al | O | B | Total | |||
1 | 0.5 | C·2A | 33.33/21.54 | 66.67/78.46 | 0 | 417 | 1668 | 2919 | - | 5004 |
2 | 30.47/20.03 | 60.95/72.93 | 8.58/7 | 373 | 1492 | 2926 | 210 | 5001 | ||
3 | 0.75 | 3C·4A | 42.86/29.17 | 57.14/70.83 | 0 | 579 | 1544 | 2895 | - | 5018 |
4 | 39.35/27.13 | 52.48/65.87 | 8.17/7 | 515 | 1374 | 2897 | 214 | 5000 | ||
5 | 1 | C·A | 50/35.44 | 50/64.56 | 0 | 715 | 1430 | 2860 | - | 5005 |
6 | 46.09/32.96 | 46.09/60.04 | 7.82/7 | 637 | 1274 | 2872 | 216 | 4999 | ||
7 | 1.71 | 12C·7A | 63.16/48.48 | 36.84/51.52 | 0 | 1020 | 1190 | 2805 | - | 5015 |
8 | 58.56/45.09 | 34.18/47.91 | 7.26/7 | 903 | 1054 | 2820 | 224 | 5001 | ||
9 | 2 | 2C·A | 66.67/52.34 | 33.33/47.66 | 0 | 1112 | 1112 | 2780 | - | 5004 |
10 | 61.93/48.68 | 30.97/44.32 | 7.10/7 | 986 | 986 | 2804 | 226 | 5002 |
Sample | C/A | CaO/[%] | Al2O3/[%] | B2O3/[%] |
---|---|---|---|---|
a | 1.49 | 45 | 55 | 0 |
b | 1.82 | 50 | 50 | 0 |
c | 2.22 | 55 | 45 | 0 |
d | 1.49 | 41.85 | 51.15 | 7 |
e | 1.82 | 46.5 | 46.5 | 7 |
f | 2.22 | 51.15 | 41.85 | 7 |
C/A | System | Al-O/[Å] | Ca-O/[Å] | B-O/[Å] | O-O/[Å] |
---|---|---|---|---|---|
0.5 | CaO–Al2O3 | 1.76 | 2.34 | - | 2.76 |
CaO–Al2O3–B2O3 | 1.76 | 2.34 | 1.36 | 2.76 | |
0.75 | CaO–Al2O3 | 1.76 | 2.34 | - | 2.76 |
CaO–Al2O3–B2O3 | 1.76 | 2.33 | 1.36 | 2.76 | |
1 | CaO–Al2O3 | 1.76 | 2.34 | - | 2.77 |
CaO–Al2O3–B2O3 | 1.76 | 2.33 | 1.36 | 2.77 | |
1.17 | CaO–Al2O3 | 1.76 | 2.33 | - | 2.78 |
CaO–Al2O3–B2O3 | 1.76 | 2.32 | 1.36 | 2.77 | |
2 | CaO–Al2O3 | 1.76 | 2.33 | - | 2.78 |
CaO–Al2O3–B2O3 | 1.75 | 2.32 | 1.36 | 2.78 |
C/A | System | Al-O | Ca-O | B-O | O-O | Al-Al |
---|---|---|---|---|---|---|
0.5 | CaO–Al2O3 | 4.42 | 6.07 | - | 8.32 | 6.47 |
CaO–Al2O3–B2O3 | 4.37 | 6.10 | 3.17 | 8.06 | 5.76 | |
0.75 | CaO–Al2O3 | 4.34 | 5.97 | - | 7.81 | 5.64 |
CaO–Al2O3–B2O3 | 4.31 | 6.01 | 3.20 | 7.64 | 5.14 | |
1 | CaO–Al2O3 | 4.25 | 5.91 | - | 7.36 | 4.97 |
CaO–Al2O3–B2O3 | 4.24 | 6.02 | 3.21 | 7.29 | 4.52 | |
1.17 | CaO–Al2O3 | 4.19 | 5.83 | - | 6.70 | 3.81 |
CaO–Al2O3–B2O3 | 4.19 | 5.90 | 3.32 | 6.70 | 3.58 | |
2 | CaO–Al2O3 | 4.19 | 5.82 | - | 6.53 | 3.49 |
CaO–Al2O3–B2O3 | 4.17 | 5.88 | 3.32 | 6.53 | 3.30 |
C/A | System | Q0 [%] | Q1 [%] | Q2 [%] | Q3 [%] | Q4 [%] |
---|---|---|---|---|---|---|
0.5 | CaO–Al2O3 | 0 | 0.67 | 3.70 | 18.26 | 77.37 |
CaO–Al2O3–B2O3 | 0.30 | 0.89 | 9.35 | 34.72 | 54.74 | |
difference | 0.30 | 0.22 | 5.65 | 16.46 | (22.63) | |
0.75 | CaO–Al2O3 | 0 | 0.45 | 3.27 | 20.14 | 76.14 |
CaO–Al2O3–B2O3 | 0.31 | 1.90 | 10.27 | 35.70 | 51.82 | |
difference | 0.31 | 1.45 | 7.00 | 15.56 | (24.32) | |
1 | CaO–Al2O3 | 0 | 1.04 | 5.99 | 23.84 | 69.13 |
CaO–Al2O3–B2O3 | 0 | 2.65 | 12.77 | 36.14 | 48.44 | |
difference | 0 | 1.61 | 6.78 | 12.30 | (20.69) | |
1.71 | CaO–Al2O3 | 0.75 | 2.99 | 15.46 | 35.31 | 45.49 |
CaO–Al2O3–B2O3 | 0.75 | 5.22 | 24.07 | 40.30 | 29.66 | |
difference | 0 | 2.23 | 8.61 | 4.99 | (15.83) | |
2 | CaO–Al2O3 | 0.42 | 7.60 | 22.86 | 39.87 | 29.25 |
CaO–Al2O3–B2O3 | 1.42 | 9.12 | 27.59 | 40.57 | 21.30 | |
difference | 1 | 1.52 | 4.73 | 0.70 | (7.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, C.; Jiang, M. Effect of B2O3 Addition and CaO/Al2O3 Ratios on Melt Structure and Viscosity of CaO–Al2O3-Based Slags. Metals 2022, 12, 1255. https://doi.org/10.3390/met12081255
Zhang X, Liu C, Jiang M. Effect of B2O3 Addition and CaO/Al2O3 Ratios on Melt Structure and Viscosity of CaO–Al2O3-Based Slags. Metals. 2022; 12(8):1255. https://doi.org/10.3390/met12081255
Chicago/Turabian StyleZhang, Xiaobo, Chengjun Liu, and Maofa Jiang. 2022. "Effect of B2O3 Addition and CaO/Al2O3 Ratios on Melt Structure and Viscosity of CaO–Al2O3-Based Slags" Metals 12, no. 8: 1255. https://doi.org/10.3390/met12081255