Machinable Leaded and Eco-Friendly Brass Alloys for High Performance Manufacturing Processes: A Critical Review
Abstract
:1. Introduction
2. Chemical Composition of Leaded and Lead-Free Brass Alloys
3. Microstructure, Mechanical Properties and Processing Relationships
3.1. Leaded Brasses
3.1.1. Microstructure
3.1.2. Thermomechanical Processing
3.1.3. Mechanical Behaviour
3.2. Eco-Friendly Brasses (Pb-Free)
3.2.1. Novel Lead-Free Brasses
3.2.2. Conventional Lead-Free Brasses—Microstructure and Mechanical Properties Optimisation
3.3. Failure Types Encountered in Leaded and Lead-Free Brass Components
3.3.1. In-Process Failure Modes
Hot-Shortness
3.3.2. In-Service Failure Modes
Dezincification
Stress Corrosion Cracking (SCC)
4. Machinability Evaluation
4.1. Chip Formation and Tool Wear
4.1.1. Leaded Brasses
4.1.2. Eco-Friendly Brasses (Pb-Free)
4.2. Cutting Force and Surface Roughness
4.3. Employment of Vibrational Analysis towards Machinability Evaluation
5. Conclusions and Further Research
- (a)
- The compositional and microstructural design of novel lead-free alloys through computational techniques such as ab initio calculations, CAPHAD (calculation of phase diagrams) approaches alongside general thermodynamic/kinetics and finite element modelling. Such approaches could assess novel compositions in terms of their thermodynamic stability, constituent phases, mechanical properties and corrosion resistance without the expense of physically manufacturing the alloys. Furthermore, these computational approaches could be used alongside experiments to validate and assist in optimization of the thermomechanical processing route of discovered compositions.
- (b)
- Simultaneous “multi-objective” optimisation of the major quality characteristics (chip morphology, power consumption, cutting force and surface roughness) utilising advanced statistical techniques, such as Desirability Functions (DFs) for the machinability of lead-free brass alloys. The optimisation and validation of the cutting conditions in industrial scale for the fabrication of exemplary final brass industrial component by using complex machining operations (such as CNC machining center).
- (c)
- Application of on-line monitoring techniques (e.g., vibration sensors/vibrodiagnostics) might be also employed to forecast the cutting tool durability and service lifetime. In addition, the incurred cutting mechanisms could be further predicted and quantified using appropriate numerical simulation by Finite Element Analysis/FEA software.
- (d)
- Comparative studies concerning the elemental leaching effects between novel lead-free brasses and conventional leaded brasses. This is especially crucial in cases where new alloying additions have been introduced and the resulting alloys have not been investigated in terms of their corrosion performance. This research must be carried out to conduct a risk assessment type study aiming to acknowledge and minimise any impact of these new compositions may have on human health and environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Chemical Composition of Machinable Brass Alloys
Conventional Leaded Brasses | |
---|---|
Alloy Composition | Ref. |
CuZn40Pb | [4,7] |
CuZn39Pb3 | [8,19,26,27,29,45,46,47,48,49,50,58,59,64,78,82,104,105,106] |
CuZn40Pb2 | [51,52,53,54,55] |
CuZn40Pb3 | [6,7] |
CuZn40Pb4 | [7] |
CuZn39Pb2 | [47,48,57,102] |
CuZn36Pb2As | [46,50,59] |
Conventional Lead-Free Brasses | |
---|---|
Alloy Composition | Ref. |
CuZn42 | [25,30,79,80,91,104] |
CuZn41.5 | [31] |
CuZn40 | [7,23] |
CuZn38 | [25] |
CuZn38As | [24,25,31,50,80,81,82,92,93,104] |
CuZn38Sn | [81] |
CuZn37 | [108] |
CuZn36 | [25,50,79] |
CuZn32 | [64] |
CuZn21Si3P | [19,30,65,100,106,107,108,109] |
Novel Brass Compositions–High Aluminium (Al) Content | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Pb | Ni | Fe | Sn | Zn | Al | Si | Ref. |
Bal. | - | - | - | - | 37.6 | 3.68 | - | [109] |
Bal. | 2.32 | 0.24 | 0.33 | 0.53 | 32.67 | 2.88 | 0.06 | [109] |
Bal. | - | - | 0.028 | - | 30.2 | 1.66 | - | [82] |
Bal. | - | - | 0.03 | - | 33.7 | 1.51 | - | [82] |
Bal. | - | - | 0.033 | - | 34.2 | 1.49 | - | [82] |
Bal. | - | - | 0.032 | - | 34.5 | 1.48 | - | [82] |
Novel Brass Compositions–High Lead (Pb) Content | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Pb | Ni | Fe | Sn | Zn | Al | Si | Ref. |
Bal. | 4.23 | 0.24 | 0.33 | 1.08 | 32.28 | 1.57 | 0.06 | [109] |
Bal. | 3.5 | - | - | - | 39.6 | - | - | [61] |
Bal. | 3.04 | 0.02 | 0.17 | 0.06 | 37.96 | 0.02 | - | [3] |
Bal. | 2.9 | - | - | - | 38.8 | - | - | [85] |
Bal. | 2.6 | - | 0.2 | 0.2 | 39 | 0.02 | - | [48] |
Bal. | 2.46 | 0.25 | 0.34 | 0.55 | 33.63 | 0.8 | - | [109] |
Bal. | 2.43 | 0.24 | 0.33 | 0.54 | 33.15 | 2.01 | 0.06 | [109] |
Bal. | 1.65 | 0.25 | 0.36 | 0.54 | 33.75 | 0.84 | 0.1 | [109] |
Bal. | 1.46 | - | 0.114 | 0.096 | 35.02 | 0.503 | - | [33] |
Bal. | 1.45 | - | 0.116 | 0.096 | 34.89 | 0.506 | - | [33] |
Bal. | 0.95 | - | 0.07 | - | 38.77 | 1.01 | - | [109] |
Bal. | 0.909 | - | 0.095 | 0.104 | 39.1 | 0.59 | - | [33] |
Bal. | 0.894 | - | 0.095 | 0.104 | 38.97 | 0.594 | - | [33] |
Novel Brass Compositions–High Tin (Sn) Content | |||||
---|---|---|---|---|---|
Cu | Pb | Fe | Sn | Zn | Ref. |
Bal. | 0.02 | 0.03 | 17.37 | 27.49 | [103] |
Bal. | 0.01 | 0.04 | 13.89 | 26.74 | [103] |
Bal. | - | 0.06 | 11.36 | 26.72 | [103] |
Bal. | 0.02 | 0.04 | 8.02 | 28.16 | [103] |
Bal. | 0.02 | 0.05 | 5.43 | 28.63 | [103] |
Bal. | - | - | 5.3 | 39.33 | [109] |
Bal. | - | - | 1.0-4.0 | 38 | [21] |
Bal. | - | - | 3.84 | 39.61 | [109] |
Bal. | - | 0.04 | 3.16 | 28.57 | [103] |
Bal. | - | - | 1.78 | 31.53 | [109] |
Bal. | - | - | 1.39 | 31.9 | [109] |
Bal. | - | 0.03 | 1.2 | 28.8 | [102] |
Bal. | - | - | 0.95 | 34.22 | [109] |
Bal. | - | - | 0.85 | 32.11 | [109] |
Bal. | - | - | 0.78 | 39.93 | [109] |
Bal. | - | - | 0.76 | 38.2 | [109] |
Novel Brass Compositions–High Bismuth (Bi) Content | |||||||
---|---|---|---|---|---|---|---|
Cu | Fe | Sn | Zn | Bi | Si | Cr | Ref. |
Bal. | 0.22 | 0.58 | 40.83 | 2.85 | - | 0.22 | [75] |
Bal. | - | - | 40.19 | 2.20 | - | - | [17] |
Bal. | 0.23 | 0.6 | 40.64 | 2.02 | - | 0.26 | [75] |
Bal. | - | 2 | 38 | 2.00 | 0.5 | - | [105] |
Bal. | - | 1.5 | 38 | 1.50 | 0.5 | - | [105] |
Bal. | - | 1 | 38 | 1.00 | 0.5 | - | [105] |
Bal. | 0.23 | 0.60 | 40.81 | 0.99 | - | 0.26 | [75] |
Bal. | - | 0.7 | 38 | 0.80 | 0.5 | - | [105] |
Bal. | - | 0.3 | 38 | 0.40 | 0.5 | - | [105] |
Bal. | - | - | 29.2 | 0.27 | - | - | [77] |
Novel Brass Compositions–High Titanium (Ti) Content | |||||||
---|---|---|---|---|---|---|---|
Cu | Pb | Fe | Sn | Zn | Si | Ti | Ref. |
Bal. | 0.02 | 0.09 | 0.03 | 39.6 | - | 1.03 | [65] |
Bal. | - | - | 0.65 | 40.1 | - | 1.03 | [67] |
Bal. | - | - | - | 41.2 | - | 0.99 | [67] |
Bal. | 0.16 | 0.58 | 0.41 | 38.9 | 0.13 | 0.71 | [65] |
Bal. | - | - | - | 39.0 | - | 0.50 | [23] |
Novel Brass Compositions–High Silicon (Si) Content | ||||||||
---|---|---|---|---|---|---|---|---|
Cu | Pb | Ni | Fe | Sn | Zn | Al | Si | Ref. |
Bal. | - | - | - | 1.04 | 34.78 | - | 3.68 | [109] |
Bal. | - | - | - | - | 31.91 | 3.37 | 3.37 | [109] |
Bal. | 2.27 | 0.25 | 0.4 | 0.53 | 31.77 | 0.8 | 2.34 | [109] |
Bal. | 0.01 | - | 0.01 | - | 31 | - | 2.2 | [73] |
Bal. | - | - | - | - | 39.77 | - | 1.73 | [108] |
Bal. | 0.01 | - | 0.04 | - | 29 | - | 1.65 | [73] |
Bal. | - | - | - | - | 35.98 | 1.6 | 1.6 | [109] |
Bal. | - | - | - | - | 40.55 | - | 1.21 | [109] |
Bal. | - | - | - | - | 39.49 | 1 | 1.11 | [24] |
Bal. | - | - | - | - | 39.73 | 0.7 | 1.1 | [71] |
Bal. | - | - | - | - | 38.42 | 0.68 | 1.1 | [24] |
Bal. | - | - | - | - | 38.44 | 1.09 | 1.09 | [109] |
Bal. | - | - | - | 0.5 | 42 | 0.5 | 1 | [73] |
Bal. | - | - | - | - | 38.37 | 0.34 | 0.95 | [71] |
Bal. | - | - | - | - | 39.37 | 0.18 | 0.95 | [24] |
Bal. | 0.01 | - | 0.04 | - | 30 | - | 0.93 | [70] |
Bal. | - | - | - | - | 40.43 | 0.38 | 0.87 | [71] |
Bal. | - | - | - | - | 38.75 | 0.9 | 0.85 | [24] |
Bal. | - | - | - | - | 40.9 | - | 0.83 | [102] |
Bal. | - | - | - | - | 39.13 | 0.69 | 0.78 | [24] |
Bal. | - | - | - | - | 38.64 | 0.51 | 0.78 | [72] |
Bal. | - | - | - | - | 36.92 | 0.27 | 0.78 | [71] |
Bal. | - | - | - | - | 33.68 | 0.2 | 0.73 | [71] |
Bal. | - | - | - | - | 38.91 | 0.5 | 0.69 | [24] |
Bal. | - | - | - | - | 39.29 | 0.54 | 0.54 | [109] |
Bal. | - | - | - | - | 38 | - | 0.5 | [105] |
Bal. | - | - | - | - | 37.69 | 0.49 | 0.49 | [109] |
Bal. | - | - | - | - | 40.67 | - | 0.34 | [102] |
Novel Brass Compositions–Uncommon Alloying Element Additions (Sb, Graphite, Mg, Mn, C, Ce) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Fe | Sn | Zn | Al | Sb | Bi | Graphite | Si | Mg | Mn | Cr | C | Ce | Ref. |
Bal. | 0.095 | - | 30.1 | - | - | 0.173 | - | - | - | 1.26 | - | - | - | [77] |
Bal. | 0.063 | - | 29.1 | - | - | 0.2 | - | - | - | 3.48 | - | - | - | [77] |
Bal. | 0.096 | - | 29.6 | - | - | 0.204 | - | - | - | 5.83 | - | - | - | [77] |
Bal. | - | - | 35 | - | 0.0–2.34 | - | - | - | 0.0–1.79 | - | - | - | - | [22] |
Bal. | - | - | 40 | - | - | - | 0–1.0 | - | 0.3–1.9 | - | - | - | - | [68] |
Bal. | - | - | 40 | - | - | - | - | - | 1 | - | - | - | - | [59] |
Bal. | - | - | 39.2 | - | - | - | 0.0–1.0 | - | - | - | - | - | - | [1] |
Bal. | 4.78 | - | 38 | - | - | - | - | - | - | - | - | 0.22 | - | [69] |
Bal. | - | - | 38.6 | - | - | - | - | - | - | - | - | - | 0.07 | [74] |
Bal. | - | 0.5 | 41.6 | 0.5 | 0.4 | - | - | 1 | - | - | - | - | - | [73] |
Bal. | - | 0.5 | 41 | 0.5 | 1 | - | - | 1 | - | - | - | - | - | [73] |
Bal. | - | 0.5 | 40.6 | 0.5 | 1.4 | - | - | 1 | - | - | - | - | - | [73] |
Bal. | - | 0.5 | 40 | 0.5 | 2 | - | - | 1 | - | - | - | - | - | [73] |
Bal. | 0.22 | 0.59 | 40.86 | - | - | - | - | - | - | - | 0.34 | - | - | [75] |
References
- Imai, H.; Kosaka, Y.; Kojima, A.; Li, S.; Kondoh, K.; Umeda, J.; Atsumi, H. Characteristics and machinability of lead-free P/M Cu60–Zn40 brass alloys dispersed with graphite. Powder Technol. 2010, 198, 417–421. [Google Scholar] [CrossRef]
- Chakrabarti, A.K.; Spretnak, J.W. The effect of solute (Zn) concentration on the plastic deformation properties of α and α + β Cu-Zn alloys. Mater. Sci. Eng. 1976, 24, 95–100. [Google Scholar] [CrossRef]
- Panagopoulos, C.N.; Georgiou, E.P.; Simeonidis, K. Lubricated wear behavior of leaded α + β brass. Tribol. Int. 2012, 50, 1–5. [Google Scholar] [CrossRef]
- Achiţei, D.C.; Minciună, M.G.; Vizureanu, P.; Sandu, A.V.; Cimpoeşu, R.; Istrate, B. Study on structure and properties of CuZnPb alloy. IOP Conf. Ser. Mater. Sci. Eng. 2019, 133, 012015. [Google Scholar] [CrossRef] [Green Version]
- La Fontaine, A.; Keast, V.J. Compositional distributions in classical and lead-free brasses. Mater. Charact. 2006, 57, 424–429. [Google Scholar] [CrossRef]
- Wolfenden, A.; Wright, P.K. Role of lead in free-machining brass. Met. Technol. 1979, 6, 297–302. [Google Scholar] [CrossRef]
- Stoddart, C.T.H.; Lea, C.; Dench, W.A.; Green, P.; Pettit, H.R. Relationship between lead content of Cu-40Zn, machinability, and swarf surface composition determined by auger electron spectroscopy. Met. Technol. 1979, 6, 176–184. [Google Scholar] [CrossRef]
- Pantazopoulos, G. Leaded brass rods C 38500 for automatic machining operations: A technical report. J. Mater. Eng. Perform. 2002, 11, 402–407. [Google Scholar] [CrossRef]
- Leaded Brasses, Copper Development Association Inc. Available online: https://www.copper.org/resources/properties/microstructure/lead_brasses.html (accessed on 17 January 2022).
- Siu, K.W.; Kwok, J.C.M.; Ngan, A.H.W. Thermo-mechanical processing of brass components for potable-water usage increases risks of Pb leaching. Water Res. 2020, 186, 116414. [Google Scholar] [CrossRef]
- Korshin, G.V.; Ferguson, J.F.; Lancaster, A.N. Influence of natural organic matter on the corrosion of leaded brass in potable water. Corros. Sci. 2000, 42, 53–66. [Google Scholar] [CrossRef]
- Triantafyllidou, S.; Parks, J.; Edwards, M. Lead particles in potable water. Am. Water Work. Assoc. 2007, 99, 107–117. [Google Scholar] [CrossRef]
- Tang, M.; Sinsheimer, P.; Sarver, E.; Parks, J.; Edwards, M. Evaluating “lead-free” brass performance in potable water. Corrosion 2019, 75, 865–875. [Google Scholar] [CrossRef]
- Elfland, C.; Scardina, P.; Edwards, M. Lead-contaminated water from brass plumbing devices in new buildings. Am. Water Work. Assoc. 2010, 102, 66–76. [Google Scholar] [CrossRef]
- Triantafyllidou, S.; Nguyen, C.K.; Zhang, Y.; Edwards, M.A. Lead (Pb) quantification in potable water samples: Implications for regulatory compliance and assessment of human exposure. Environ. Monit. Assess. 2021, 185, 1355–1365. [Google Scholar] [CrossRef]
- Estelle, A.A. Drinking water lead regulations: Impact on the brass value chain. Mater. Sci. Technol. 2016, 32, 1763–1770. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Kondoh, K.; Imai, H.; Atsumi, H. Fabrication and properties of lead-free machinable brass with Ti additive by powder metallurgy. Powder Technol. 2011, 205, 242–249. [Google Scholar] [CrossRef]
- Available online: https://www.epa.gov/sdwa/use-lead-free-pipes-fittings-fixtures-solder-and-flux-drinking-water (accessed on 12 December 2021).
- Schultheiss, F.; Windmark, C.; Sjöstrand, S.; Rasmusson, M.; Ståhl, J.E. Machinability and manufacturing cost in low-lead brass. Int. J. Adv. Manuf. Technol. 2018, 99, 2101–2110. [Google Scholar] [CrossRef] [Green Version]
- Kuyucak, S.; Sahoo, M. A review of the machinability of copper-base alloys. Can. Metall. Q. 1996, 35, 1–15. [Google Scholar] [CrossRef]
- Suksongkarm, P.; Rojananan, S.; Rojananan, S. Bismuth formation in lead-free Cu-Zn-Si yellow brass with various bismuth-tin alloy additions. Mater. Trans. 2018, 59, 1747–1752. [Google Scholar] [CrossRef] [Green Version]
- Adineh, M.; Doostmohammadi, H. Microstructure, mechanical properties and machinability of Cu-Zn-Mg and Cu-Zn-Sb brass alloys. Mater. Sci. Technol. 2019, 35, 1504–1514. [Google Scholar] [CrossRef]
- Atsumi, H.; Imai, H.; Li, S.; Kondoh, K.; Kousaka, Y.; Kojima, A. The effect of solid solutionizing Ti element on microstructural and mechanical properties of extruded Cu-40Zn-Ti ternary alloy. Trans. JWRI 2011, 40, 67–71. [Google Scholar]
- Yang, C.; Ding, Z.; Tao, Q.C.; Liang, L.; Ding, Y.F.; Zhang, W.W.; Zhu, Q.L. High-strength and free-cutting silicon brasses designed via the zinc equivalent rule. Mater. Sci. Eng. A 2018, 723, 296–305. [Google Scholar] [CrossRef]
- Toulfatzis, A.; Pantazopoulos, G.; David, C.; Sagris, S.; Paipetis, A. Final heat treatment as a possible solution for the improvement of machinability of Pb-free brass alloys. Metals 2018, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Toulfatzis, A.I.; Pantazopoulos, G.A.; Paipetis, A.S. Microstructure and properties of lead-free brasses using post-processing heat treatment cycles. Mater. Sci. Technol. 2016, 32, 1771–1781. [Google Scholar] [CrossRef]
- Pantazopoulos, G.; Vazdirvanidis, A. Characterization of the microstructural aspects of machinable α–β phase brass. Microsc. Anal. 2008, 22, 13–16. [Google Scholar]
- Vaxevanidis, N.M.; Fountas, N.A.; Koutsomichalis, A.; Kechagias, J.D. Experimental investigation of machinability parameters in turning of CuZn39Pb3 brass alloy. Procedia Struct. Integr. 2018, 10, 333–341. [Google Scholar] [CrossRef]
- Zoghipour, N.; Tascioglou, E.; Atay, G.; Kaynak, Y. Machining-induced surface integrity of holes drilled in lead-free brass alloy. Procedia CIRP 2020, 87, 148–152. [Google Scholar] [CrossRef]
- Nobel, C.; Hofmann, U.; Klocke, F.; Veselovac, D.; Puls, H. Application of a new, severe-condition friction test method to understand the machining characteristics of Cu-Zn alloys using coated cutting tools. Wear 2015, 344, 58–68. [Google Scholar] [CrossRef]
- Naik, D.B.; Dave, A.K. Multipass, multicriterion optimization in turning. Int. J. Adv. Manuf. Technol. 1998, 14, 544–548. [Google Scholar] [CrossRef]
- Besseris, G.J. Non-linear nonparametric quality screening in low sampling testing. Int. J. Qual. Reliab. Manag. 2010, 27, 893–915. [Google Scholar] [CrossRef]
- Amaral, L.; Quinta, R.; Silva, T.E.; Soares, R.M.B.; Castellanos, S.D.; De Jesus, A.M.P. Effect of lead on the machinability of brass alloys using polycrystalline diamond cutting tools. J. Strain Anal. 2018, 53, 602–615. [Google Scholar] [CrossRef]
- Vaxevanidis, N.M.; Kechagias, J.D.; Fountas, N.A.; Manolakos, D.E. Evaluation of machinability in turning of engineering alloys by applying artificial neural networks. Open Constr. Build. Technol. J. 2014, 8, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; Pimenov, D.; Erdakov, I.; Taha, M.; El Rayes, M.; Soliman, M. Artificial intelligence monitoring of hardening methods and cutting conditions and their effects on surface roughness, performance, and finish turning costs of solid-state recycled aluminum alloy 6061 chips. Metals 2018, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Hrechuk, A.; Bushlya, V.; M’Saoubi, R.; Ståhl, J.-E. Quantitative analysis of chip segmentation in machining using an automated image processing method. Procedia CIRP 2019, 82, 314–319. [Google Scholar] [CrossRef]
- Besseris, G.J. A methodology for product reliability enhancement via saturated-unreplicated fractional factorial designs. Reliab. Eng. Syst. Saf. 2010, 95, 742–749. [Google Scholar] [CrossRef]
- Fountas, N.; Koutsomichalis, A.; Kechagias, J.D.; Vaxevanidis, N.M. Multi-response optimization of CuZn39Pb3 brass alloy turning by implementing Grey Wolf algorithm. Frat. Ed Integrità Strutt. 2019, 50, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Arvidssson, M.; Gremyr, I. Principles of robust design methodology. Qual. Reliab. Eng. Int. 2008, 24, 23–35. [Google Scholar] [CrossRef]
- Manna, A.; Bhattacharyya, B. Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC. Int. J. Adv. Manuf. Technol. 2006, 28, 67–75. [Google Scholar] [CrossRef]
- Ilzarbe, L.; Álvarez, M.J.; Viles, E.; Tanco, M. Practical applications of design of experiments in the field of engineering: A bibliographical review. Qual. Reliab. Eng. Int. 2008, 24, 417–428. [Google Scholar] [CrossRef]
- Viles, E.; Tanco, M.; Ilzarbe, L.; Alvarez, M.J. Planning experiments, the first real task in reaching a goal. Qual. Eng. 2009, 21, 44–51. [Google Scholar] [CrossRef]
- Tanco, M.; Viles, E.; Ilzarbe, L.; Alvarez, M.J. Barriers faced by engineers when applying design of experiments. TQM J. 2009, 21, 565–575. [Google Scholar] [CrossRef]
- Tanco, M.; Viles, E.; Ilzarbe, L.; Alvarez, M.J. Implementation of design of experiments projects in industry. Appl. Stoch. Models Bus. Ind. 2009, 25, 478–505. [Google Scholar] [CrossRef]
- Pantazopoulos, G.; Vazdirvanidis, A. Failure analysis of a fractured leaded-brass (CuZn39Pb3) extruded hexagonal rod. J. Fail. Anal. Prev. 2008, 8, 218–222. [Google Scholar] [CrossRef]
- Toulfatzis, A.I.; Besseris, G.J.; Pantazopoulos, G.A.; Stergiou, C. Characterization and comparative machinability investigation of extruded and drawn copper alloys using non-parametric multi-response optimization and orthogonal arrays. Int. J. Adv. Manuf. Technol. 2011, 57, 811–826. [Google Scholar] [CrossRef]
- Mapelli, C.; Venturini, R. Dependence of the mechanical properties of an α/β brass on the microstructural features induced by hot extrusion. Scr. Mater. 2006, 54, 1169–1173. [Google Scholar] [CrossRef]
- Momeni, A.; Ebrahimi, G.R.; Faridi, H.R. Effect of chemical composition and processing variables on the hot flow behavior of leaded brass alloys. Mater. Sci. Eng. A 2015, 626, 1–8. [Google Scholar] [CrossRef]
- Garcia, P.; Rivera, S.; Palacios, M.; Belzunce, J. Comparative study of the parameters influencing the machinability of leaded brasses. Eng. Fail. Anal. 2010, 17, 771–776. [Google Scholar] [CrossRef]
- Toulfatzis, A.I.; Pantazopoulos, G.A.; David, C.N.; Sagris, D.S.; Paipetis, A.S. Machinability of eco-friendly lead-free brass alloys: Cutting-force and surface-roughness optimization. Metals 2018, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Holler, K.; Reetz, B.; Müller, K.B.; Pyzalla, A.; Reimers, W. Microstructure and properties of hot extruded brass CuZn40Pb2. Mater. Sci. Forum 2003, 426–432, 3667–3672. [Google Scholar] [CrossRef]
- Loginov, Y.N.; Ovchinnikov, S. Increase in the uniformity of structure and properties of extruded workpieces of alpha + beta lead brasses. Metallurgist 2015, 8, 342–347. [Google Scholar] [CrossRef]
- Kunčická, L.; Jambor, M.; Weiser, A.; Dvořák, J. Structural factors inducing cracking of brass fittings. Materials 2021, 14, 3255. [Google Scholar] [CrossRef] [PubMed]
- Kunčická, L.; Benč, M.; Andreyachshenko, V. Effect of residual stress on cracking of hot-die forged brass fittings. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1190, 012031. [Google Scholar] [CrossRef]
- Kunčická, L.; Kocich, R. Effects of temperature (in)homogeneity during hot stamping on deformation behavior, structure and properties of brass valves. Adv. Res. Mater. 2021, 202101414. [Google Scholar] [CrossRef]
- Chandra, T.; Jonas, J.J.; Taplin, D.M.R. Grain-boundary sliding and intergranular cavitation during superplastic deformation of α/β brass. J. Mater. Sci. 1978, 13, 2380–2384. [Google Scholar] [CrossRef]
- Hentati, N.; Makni, A.; Elleuch, R. Study of failure modes affecting a crimped nut related to forging process. J. Fail. Anal. Prev. 2012, 12, 130–138. [Google Scholar] [CrossRef]
- Blaz, L.; Konior, Z.; Majda, T. Structural aspects of α/β transformation in hot deformed CuZn-39Pb3 alloy. J. Mater. Sci. 2001, 36, 3629–3635. [Google Scholar] [CrossRef]
- Pantazopoulos, G.A.; Toulfatzis, A.I. Fracture modes and mechanical characteristics of machinable brass rods. Metallogr. Microstruct. Anal. 2012, 1, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Adineh, M.; Doostmohammadi, H.; Raiszadeh, R. Effect of Si and Al on the microstructure, mechanical properties and machinability of 65Cu-35Zn brass. Iran. J. Mater. Sci. Eng. 2019, 16, 21–32. [Google Scholar]
- Kashyap, B.P.; Verma, S.; Mandlik, P.; Kumar, N.; Toppo, S.P. Effect of test temperature on tensile properties of α/β brass containing lead. Mater. Sci. Technol. 2006, 22, 363–367. [Google Scholar] [CrossRef]
- Laporte, V.; Mortensen, A. Intermediate temperature embrittlement of copper alloys. Int. Mater. Rev. 2009, 54, 94–116. [Google Scholar] [CrossRef] [Green Version]
- Wolley, D.J.; Fox, A.G. The embrittlement of leaded and unleaded α+β (60-40) brasses in the temperature range 300 to 500 °C. J. Mater. Sci. Lett. 1988, 7, 763–765. [Google Scholar] [CrossRef]
- Flegeau, G.; Taleb, L.; Hauet, A.; Vassal, C. Cyclic behavior of an industrial brass Cu Zn32. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; Volume 535, pp. 189–192. [Google Scholar]
- Johansson, J.; Persson, H.; Ståhl, J.-E.; Zhou, J.-E.; Bushlya, V.; Schultheiss, F. Machinability evaluation of low-lead brass alloys. Procedia Manuf. 2019, 38, 1723–1730. [Google Scholar] [CrossRef]
- Atsumi, H.; Imai, H.; Li, S.; Kondoh, K.; Kousaka, Y.; Kojima, A. Fabrication and properties of high-strength extruded brass using elemental mixture of Cu-40% Zn alloy powder and Mg particle. Mater. Chem. Phys. 2012, 135, 554–562. [Google Scholar] [CrossRef]
- Li, S.; Imai, H.; Atsumi, H.; Kondoh, K.; Kojima, A.; Kousaka, Y.; Yamamoto, K.; Takahashi, M. The effects of Ti and Sn alloying elements on precipitation strengthened Cu40Zn brass using powder metallurgy and hot extrusion. Mater. Sci. Eng. A 2012, 535, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, C.; Li, S.; Pan, D.; Zhen, F. Interface design of lead-free free-cutting titanium reinforced graphite brass composites and its effect on mechanical properties and cutting performance. Mater. Sci. Eng. A 2020, 774, 138909. [Google Scholar] [CrossRef]
- Zhuo, H.-O.; Tank, J.-C.; Xue, Y.-Y.; Ye, N. Preparation of lead-free free-cutting graphite brasses by graphitization of cementite. Trans. Nonferrous Met. Soc. China 2015, 25, 3252–3257. [Google Scholar] [CrossRef]
- Alirezaei, M.; Doostmohammadi, H. Microstructure evolution in cast and equilibrium heat-treated CuZn30-(Si) alloys. Int. J. Cast Met. Res. 2016, 29, 222–227. [Google Scholar] [CrossRef]
- Yang, C.; Yang, Y.; Lin, G. Tailoring chip morphology by correlating the microstructure and dynamic yield strength in turning of lead-free silicon brasses. J. Manuf. Processes 2020, 53, 420–430. [Google Scholar] [CrossRef]
- Yang, C.; Ye, W.; Yang, Y.; Wang, F.; Ding, Y.; Zhu, Q.; Zhang, W. Microstructural evolution and mechanical behavior of lead-free silicon brass manufactured by low-pressure die casting. J. Mater. Eng. Perform. 2018, 27, 5478–5488. [Google Scholar] [CrossRef]
- Suksongkarm, D.; Rojananan, S.; Rojananan, S. Microstructure and hardness of Cu-Zn-Si-Al-Sn with antimony addition. Adv. Mater. Res. 2013, 802, 179–183. [Google Scholar] [CrossRef]
- Chandra, T.; Jonas, J.J.; Taplin, D.M.R. The mechanical behavior of cerium-modified alpha-beta brass at high temperatures. J. Mater. Sci. 1976, 11, 1843–1848. [Google Scholar] [CrossRef]
- Atsumi, H.; Imai, H.; Li, S.; Kondoh, K.; Kousaka, Y.; Kojima, A. High-strength, lead-free machinable α–β duplex phase brass Cu–40Zn–Cr–Fe–Sn–Bi alloys. Mater. Sci. Eng. A 2011, 529, 275–281. [Google Scholar] [CrossRef]
- Thomson, J.; Zavadil, R.; Sahoo, M. Development of a lead-free bearing material for aerospace applications. Int. J. Met. 2010, 4, 19–30. [Google Scholar] [CrossRef]
- Basori, I.; Pratiwi, H.I.; Sofyan, B.T. Effects of manganese on the microstructures, mechanical properties and deformation characteristics of Cu-29Zn alloy. Mater. Sci. Forum 2017, 917, 212–217. [Google Scholar] [CrossRef]
- Li, Z.Q.; WeiDong, W.; KaiZhou, L.; GengChun, C.; WeiPing, C. Study on microstructure and properties of brass containing Sb and Mg. Sci. China Ser. E Technol. Sci. 2009, 52, 2172–2174. [Google Scholar]
- Toulfatzis, A.I.; Pantazopoulos, G.A.; Paipetis, A.S. Fracture behavior and characterization of lead-free brass alloys for machining applications. J. Mater. Eng. Perform. 2014, 23, 3193–3206. [Google Scholar] [CrossRef]
- Toulfatzis, A.I.; Pantazopoulos, G.A.; Paipetis, A.S. Fracture mechanics properties and failure mechanisms of environmental-friendly brass alloys under impact, cyclic and monotonic loading conditions. Eng. Fail. Anal. 2018, 90, 497–517. [Google Scholar] [CrossRef]
- Kozana, J.; Garbacz-Klempka, A.; Piękoś, M. Lead-free casting brasses. Investigations of the corrosion resistance and shaping of microstructure and properties. Arch. Foundry Eng. 2019, 19, 113–118. [Google Scholar]
- Iecks, G.; Maiolo, L.M.A.; Bortolozo, A.D.; Osório, W.R. Designing a microstructural array associated with hardness of dual-phase Cu-Zn alloy using investment casting. Mater. Res. 2018, 21, e20171059. [Google Scholar] [CrossRef]
- Lobanov, M.L.; Danilov, S.V.; Pastukhov, V.I. Crystallographic peculiarities of β-α transformation in brass induced by hot extrusion. Solid State Phenom. 2019, 299, 541–545. [Google Scholar] [CrossRef]
- Dhinwal, S.S.; Shukla, A.J.; Biswas, S.; Chouhan, D.K. Evolution of microstructure and crystallographic texture in α–β brass during equal channel angular pressing. Mater. Characteris. 2020, 163, 110270. [Google Scholar] [CrossRef]
- Ibrahim, A.; Rizal, S.; Ali, N.; Huzni, S. The effect of chemical composition on grain size and formability of the free-lead Cu-30Zn alloy: A short review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 536, 012019. [Google Scholar] [CrossRef]
- Pantazopoulos, G. A review of defects and failures in brass rods and related components. Pract. Fail. Anal. 2003, 3, 14–22. [Google Scholar] [CrossRef]
- Gupta, I.; Mishra, R.R.; Nagaraj, M.; Rajesha, S. An overview on modes of failure of brass components. Int. J. Mech. Prod. Eng. 2014, 2, 33–36. [Google Scholar]
- Izumi, O.; Harada, Y. Hot Shortness of α-Brass. Trans. Jpn. Inst. Met. 1970, 11, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Hernandez, M.; Juarez-Hernandez, A.; González-Rivera, C.; Hernandez-Rodriguez, M.A.L. Bismuth segregation and crack formation on a free lead yellow brass tap. Eng. Fail. Anal. 2013, 28, 63–68. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Wang, J.-S.; Wu, P.T.-Y.; Wu, W. Microstructural development of brass alloys with various Bi and Pb additions. Met. Mater. Int. 2013, 19, 1173–1179. [Google Scholar] [CrossRef]
- Chunlei, G.; Dongfu, S.; Kaihong, Z.; Haiyan, W.; Nan, Z. Failure analysis of a lead-free brass tap used in potable water. Eng. Fail. Anal. 2016, 59, 377–383. [Google Scholar] [CrossRef]
- Chunlei, G.; Nan, Z.; Yuehua, K.; Shuncheng, W.; Kaihong, Z. Failure analysis of lead-free brass valve bodies. Eng. Fail. Anal. 2019, 100, 536–543. [Google Scholar] [CrossRef]
- Pantazopoulos, G.; Vazdirvanidis, A. Identification of corrosion and damage mechanisms by using Scanning Electron Microscopy and Energy Dispersive X-ray Microanalysis: Contribution to Failure Analysis Case Histories. IOP Conf. Ser. Mater. Sci. Eng. 2014, 55, 012015. [Google Scholar] [CrossRef] [Green Version]
- Pantazopoulos, G.; Toulfatzis, A.I. Failure analysis of a machinable brass connector in a boiler unit installation. Case Stud. Eng. Fail. Anal. 2013, 1, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Lisenko, N.; Evans, C.D.; Yao, Y.L. Effect of brass composition and phases on stress corrosion mitigation by laser shock peening. Manuf. Lett. 2020, 23, 5–8. [Google Scholar] [CrossRef]
- Choucri, J.; Balbo, A.; Zanotto, F.; Grassi, V.; Touhami, M.E.; Mansouri, I.; Monticelli, C. Corrosion behavior and susceptibility to stress corrosion cracking of leaded and lead-free brasses in simulated drinking water. Materials 2021, 15, 144. [Google Scholar] [CrossRef] [PubMed]
- ISO 3685; Tool-Life Testing with Single-Point Turning Tools. International Organization for Standardization (ISO): Geneva, Switzerland, 1993.
- Gane, N. The effect of lead on the friction and machining of brass. Philos. Mag. A 1981, 43, 545–566. [Google Scholar] [CrossRef]
- Hassan, K.; Kumar, A.; Garg, M.P. Experimental investigation of material removal rate in CNC turning using Taguchi method. Int. J. Eng. Res. Appl. 2012, 2, 1581–1590. [Google Scholar]
- Nobel, C.; Hofmann, U.; Klocke, F.; Veselovac, D. Experimental investigation of chip formation, flow, and breakage in free orthogonal cutting of copper-zinc alloys. Int. J. Adv. Manuf. Technol. 2016, 84, 1127–1140. [Google Scholar] [CrossRef]
- Laakso, S.V.A.; Hokka, M.; Niemi, E.; Kuokkala, V.-T. Investigation of the effect of different cutting parameters on chip formation of low-lead brass with experiments and simulations. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 1620–1634. [Google Scholar] [CrossRef]
- Doostmohammadi, H.; Moridshahi, H. Effect of Si on microstructure, ordering transformation and properties of the Cu60Zn40 alloy. J. Alloys Compd. 2015, 640, 401–407. [Google Scholar] [CrossRef]
- Rajabi, Z.; Doostmohammadi, H. Effect of addition of tin on the microstructure and machinability of α-brass. Mater. Sci. Technol. 2018, 34, 1218–1227. [Google Scholar] [CrossRef]
- Taha, M.A.; El-Mahallawy, N.A.; Hammouda, R.R.; Moussa, T.M.; Gheith, M.H. Machinability characteristics of lead free-silicon brass alloys as correlated with microstructure and mechanical properties. Ain Shams Eng. J. 2012, 3, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Suksongkarm, P.; Rojananan, S.; Rojananan, S. Using recycled bismuth-tin solder in novel machinable lead-free brass. Mater. Trans. 2017, 58, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Klocke, F.; Nobel, C.; Veselovac, D. Influence of tool coating, tool material, and cutting speed on the machinability of low-leaded brass alloys in turning. Mater. Manuf. Processes 2016, 31, 1895–1903. [Google Scholar] [CrossRef]
- Schultheiss, F.; Johansson, D.; Bushlya, V.; Zhou, J.; Nilsson, K.; Ståhl, J.E. Comparative study on the machinability of lead-free brass. J. Clean. Prod. 2017, 149, 366–377. [Google Scholar] [CrossRef]
- Nobel, C.; Klocke, F.; Lung, D.; Wolf, S. Machinability enhancement of lead-free brass alloys. In Proceedings of the 6th CIRP International Conference on High Performance Cutting, Berkeley, CA, USA, 23–25 June 2014; pp. 95–100. [Google Scholar]
- Vilarinho, C.; Davim, J.P.; Soares, D.; Castro, F.; Barbosa, J. Influence of the chemical composition on the machinability of brasses. J. Mater. Processing Technol. 2005, 170, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Tam, P.L.; Schultheiss, F.; Ståhl, J.-E.; Nyborg, L. Residual stress analysis of machined lead-free and lead-containing brasses. Mater. Sci. Technol. 2016, 32, 1789–1793. [Google Scholar] [CrossRef]
- Gaitonde, V.N.; Karnik, S.R.; Davim, J.P. Selection of optimal MQL and cutting conditions for enhancing machinability in turning of brass. J. Mater. Processing Technol. 2008, 204, 459–464. [Google Scholar] [CrossRef]
- Gaitonde, V.N.; Karnik, S.R.; Davim, J.P. Study on the influence of MQL and cutting conditions on machinability of brass using Artificial Neural Network. Int. J. Mater. Prod. Technol. 2010, 3, 155–172. [Google Scholar] [CrossRef]
- Al-Zaharnah, I.T. Suppressing vibrations of machining processes in both feed and radial directions using an optimal control strategy: The case of interrupted cutting. J. Mater. Processing Technol. 2006, 172, 305–310. [Google Scholar] [CrossRef]
- Xiaoliang, J.; Altintas, Y. Chatter stability model of micro-milling with process damping. J. Manuf. Sci. Eng. 2013, 135, 031011. [Google Scholar]
- Kundrak, J.; Szabo, G.; Markopoulos, A.P. Experimental and numerical investigation of the influence of cutting speed and feed rate on forces in turning of steel. Mater. Sci. Forum 2016, 862, 270–277. [Google Scholar] [CrossRef]
- Monka, P.P.; Monkova, K.; Majstrorovic, V.D.; Božić, Ž.; Andrej, A. Optimal cutting parameter specification of newly designed milling tools based on the frequency monitoring. Int. J. Adv. Manuf. Technol. 2020, 115, 777–794. [Google Scholar] [CrossRef]
- Monka, P.; Monkova, K.; Modrak, V.; Hric, S.; Pastucha, P. Study of a tap failure at the internal threads machining. Eng. Fail. Anal. 2019, 100, 25–36. [Google Scholar] [CrossRef]
Factor | Degrees of Freedom | Sum of Squares (SS) | Corrected Sum of Squares (SS′) | Variance | Percent Contribution Pp (%) | Rank |
---|---|---|---|---|---|---|
Cutting Speed | 3 | 19.0425 | 18.8254 | 6.3475 | 3.5728 | 4 |
Depth of Cut | 3 | 339.5408 | 339.3238 | 113.1803 | 64.3992 | 1 |
Feed Rate | 3 | 108.0831 | 107.8660 | 36.0277 | 20.4715 | 2 |
Material | 3 | 58.8660 | 58.6489 | 19.6220 | 11.1308 | 3 |
Error | 19 | 1.3746 | 2.2428 | 0.0723 | 0.4257 | |
Total | 31 | 526.9070 | 526.9070 | 100.0000 |
Factor | Degrees of Freedom | Sum of Square (SS) | Corrected Sum of Squares (SS′) | Variance | Percent Contribution Pp (%) | Rank |
---|---|---|---|---|---|---|
Cutting Speed | 3 | 7.3498 | 3.5422 | 2.4499 | 0.9460 | 4 |
Depth of Cut | 3 | 91.6606 | 87.8530 | 30.5535 | 23.4625 | 2 |
Feed Rate | 3 | 210.9051 | 207.0974 | 70.3017 | 55.3085 | 1 |
Material | 3 | 40.4101 | 36.6025 | 13.4700 | 9.7753 | 3 |
Error | 19 | 24.1149 | 39.3453 | 1.2692 | 10.5078 | |
Total | 31 | 374.4404 | 374.4404 | 100.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavroulakis, P.; Toulfatzis, A.I.; Pantazopoulos, G.A.; Paipetis, A.S. Machinable Leaded and Eco-Friendly Brass Alloys for High Performance Manufacturing Processes: A Critical Review. Metals 2022, 12, 246. https://doi.org/10.3390/met12020246
Stavroulakis P, Toulfatzis AI, Pantazopoulos GA, Paipetis AS. Machinable Leaded and Eco-Friendly Brass Alloys for High Performance Manufacturing Processes: A Critical Review. Metals. 2022; 12(2):246. https://doi.org/10.3390/met12020246
Chicago/Turabian StyleStavroulakis, Paul, Anagnostis I. Toulfatzis, George A. Pantazopoulos, and Alkiviadis S. Paipetis. 2022. "Machinable Leaded and Eco-Friendly Brass Alloys for High Performance Manufacturing Processes: A Critical Review" Metals 12, no. 2: 246. https://doi.org/10.3390/met12020246