Effect of Secondary Phases on Multi-Step Phase Transitions and Magnetocaloric Properties in MnFe-Based Alloys
Abstract
1. Introduction
2. Materials and methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moya, X.; Kar-Narayan, S.; Mathur, N.D. Caloric materials near ferroic phase transitions. Nat. Mater. 2014, 13, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Brück, E. Developments in magnetocaloric refrigeration. J. Phys. D Appl. Phys. 2005, 38, R381–R391. [Google Scholar] [CrossRef]
- Bruck, E.; Ilyn, M.; Tishin, A.M.; Tegus, O. Magnetocaloric effects in MnFeP1-xAsx-based compounds. J. Magn. Magn. Mater. 2005, 290–291, 8–13. [Google Scholar] [CrossRef]
- Szymczak, R.; Nedelko, N.; Lewinska, S.; Zubov, E.; Sivachenko, A.; Gribanov, I.; Radelytskyi, I.; Dyakonov, K.; Slawska-Waniewska, A.; Valkov, V.; et al. Comparison of magnetocaloric properties of the Mn2-xFexP0.5As0.5 (x = 1.0 and 0.7) compounds. Solid State Sci. 2014, 36, 29–34. [Google Scholar] [CrossRef]
- Hua, S.; Miaoa, X.; Liu, J.; Ou, Z.; Cong, M.; Haschuluu, O.; Gong, Y.; Qian, F.; You, Y.; Zhang, Y.; et al. Small hysteresis and giant magnetocaloric effect in Nb-substituted (Mn,Fe)2(P,Si) alloys. Intermetallics 2019, 114, 106602. [Google Scholar] [CrossRef]
- Hoglin, V.; Cedervall, J.; Andersson, M.S.; Sarkar, T.; Hudl, M.; Nordblad, P.; Andersson, Y.; Sahlberg, M. Phase diagram, structures and magnetism of the FeMnP1-xSix-system. RSC Adv. 2015, 5, 8278–8284. [Google Scholar] [CrossRef]
- Miao, X.F.; Hu, S.Y.; Xu, F.; Brück, E. Overview of magnetoelastic coupling in (Mn, Fe)2(P, Si)-type magnetocaloric materials. Rare Met. 2018, 37, 723–733. [Google Scholar] [CrossRef]
- Liu, D.M.; Zhang, Z.L.; Zhou, S.L.; Huang, Q.Z.; Deng, X.J.; Yue, M.; Liu, C.X.; Zhang, J.X.; Lynn, J.W. A pathway to optimize the properties of magnetocaloric Mn2-xFexP1-yGey for magnetic refrigeration. J. Alloys Compd. 2016, 666, 108–117. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Liu, D.M.; Xiao, W.Q.; Li, H.; Wang, S.B.; Liang, Y.T.; Zhang, H.G.; Li, S.L.; Fu, J.J.; Yue, M. Influence of the Ge distribution on the first order magnetic transition of the MnFe(P,Ge) magnetocaloric material. Phys. Chem. Chem. Phys. 2018, 20, 18117–18126. [Google Scholar] [CrossRef]
- Tu, D.; Yan, J.; Xie, Y.; Li, J.; Feng, S.; Xia, M.; Li, J.; Leung, A.P. Accelerated design for magnetocaloric performance in Mn-Fe-P-Si compounds using machine learning. J. Mater. Sci. Technol. 2022, 96, 241–247. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, C.; Lu, W.; Sun, Y.; Zhu, W.; Nie, X.; Sang, X.; Zhao, W.; Zhang, Q. Effect of Gd doping on the microstructure and magnetocaloric properties of LaFe11.5Si1.5 alloy. J. Alloys Compd. 2022, 910, 164858. [Google Scholar] [CrossRef]
- Li, C.F.; Zheng, Z.G.; Wang, W.H.; Liu, J.Y.; Lei, L.; Zeng, D.C. Effect of M/NM ratios on structural and magnetic properties of (Mn,Fe)2(P,Si) compounds. Phys. B Condens. Matter 2020, 594, 412309. [Google Scholar] [CrossRef]
- TBrown, D.; Galvan, D.; van Buskirk, J.; Mott, A.; Shamberger, P.J. Effect of carbide formation on phase equilibria and compositional modulation of transformation properties in (Mn,Fe)2(P,Si) alloys. J. Alloys Compd. 2020, 830, 154532. [Google Scholar] [CrossRef]
- Yan, A.; Müller, K.-H.; Schultz, L.; Gutfleisch, O. Magnetic entropy change in melt-spun MnFePGe. J. Appl. Phys. 2006, 99, 08K903. [Google Scholar] [CrossRef]
- Ou, Z.Q.; Wang, G.F.; Lin, S.; Tegus, O.; Brück, E.; Buschow, K.H.J. Magnetic properties and magnetocaloric effects in Mn1.2Fe0.8P1−xGex compounds. J. Phys. Condens. Matter 2006, 18, 11577–11584. [Google Scholar] [CrossRef]
- Chen, X.; Repaka, D.V.M.; Ramanujan, R.V. Structural investigation of the crossover in the magnetic transition of Mn-Fe-P-Ge magnetocaloric powders. J. Alloys Compd. 2016, 658, 104e109. [Google Scholar] [CrossRef]
- Wang, W.H.; Zheng, Z.G.; Huang, B.; Lai, J.W.; Zhou, Q.; Lei, L.; Zeng, D.C. Magnetocaloric effect, corrosion and mechanical properties of Mn1.05Fe0.9P0.5Si0.5Cux alloys. Intermetallics 2019, 113, 106539. [Google Scholar] [CrossRef]
- Zheng, Z.G.; Zhu, Z.R.; Yu, H.Y.; Zeng, D.C.; Li, Y.H.; He, A.; Mozharivskyj, Y. Large magnetic entropy change and magnetic phase transitions in rapidly quenched bulk Mn-Fe-P-Si alloys. J. Alloys Compd. 2017, 725, 1069–1076. [Google Scholar] [CrossRef]
- Wang, W.H.; Zheng, Z.G.; Li, C.F.; Hong, Y.; Lei, L.; Zeng, D.C. Effect of Cu and B Co-doping on magnetocaloric effect, phase transition, and mechanical properties of Mn1.05Fe0.9P0.5-xSi0.5Cu0.10Bx alloys. J. Mag. Mag. Mater. 2021, 517, 167380. [Google Scholar] [CrossRef]
- Kim, E.J.; Kang, K.H.; Yoon, C.S. MnxFe5−xSi3 for active magnetic regenerative refrigeration at room temperature. J. Mag. Mag. Mater. 2021, 530, 167952. [Google Scholar] [CrossRef]
- Aryal, A.; Dubenko, I.; Zamora, J.; Llamazares, J.L.S.; Sanchez-Valdes, C.F.; Mazumdar, D.; Talapatra, S.; Stadler, S.; Ali, N. Synthesis, structural, and magnetic properties of Heusler-type Mn2-xFe1+xGe (0.0 ≤ x ≤ 1.0) alloys. J. Mag. Mag. Mater. 2021, 538, 168307. [Google Scholar] [CrossRef]
- Phan, M.H.; Yu, S.C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 2007, 308, 325–340. [Google Scholar] [CrossRef]
- Zhu, X.; Dai, Y.; Luo, C. Electronic and magnetic properties of Co2Fe(Ga1-xSix) and Co2Fe(Al1-ySiy) Heusler alloys with high Curie temperature. J. Magn. Magn. Mater. 2016, 398, 7–12. [Google Scholar] [CrossRef]
- Trapanese, M.; Viola, A.; Franzitta, V. Design and experimental test of a thermomagnetic motor. AASRI Procedia 2012, 2, 199–204. [Google Scholar] [CrossRef]
- Lee, A.Y.; Kim, S.Y.; Oh, H.R.; Kim, H.A.; Kim, Y.D.; Lee, M.H. Effect of synthesis methods on magnetocaloric properties of Co-based Heusler-type alloys. Mater. Sci. Eng. B 2018, 231, 98–104. [Google Scholar] [CrossRef]
- Wurmehl, S.; Fecher, G.H.; Kandpal, H.C.; Ksenofontov, V.; Felser, C.; Lin, H. Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment. Appl. Phys. Lett. 2006, 88, 032503. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Pecharsky, V.K. Magnetocaloric materials. Annu. Rev. Mater. Sci. 2000, 30, 387–429. [Google Scholar] [CrossRef]
- Liu, X.B.; Liu, J.P.; Zhang, Q. Altounian, Fe magnetic moment formation and exchange interaction in Fe2P: A first-principles study. Phys. Lett. A 2013, 377, 731–735. [Google Scholar] [CrossRef]
- Wurentuya, B.; Yibole, H.; Guillou, F.; Ou, Z.; Zhang, Z.; Tegus, O. First-order magnetic transition, magnetocaloric effect and moment formation in MnFe(P,Ge) magnetocaloric materials revisited by x-ray magnetic circular dichroism. Phys. B Condens. Matter 2018, 544, 66–72. [Google Scholar] [CrossRef]
- Zhang, L.; Brück, E.; Tegus, O.; Buschow, K.H.J.; de Boer, F.R. The crystallographic phases and magnetic properties of Fe2MnSi1-xGex. Phys. B Condens. Matter 2003, 328, 295–301. [Google Scholar] [CrossRef]
- Brown, T.D.; Chen, J.; Braham, E.J.; Stadler, S.; Shamberger, P.J. Dynamic re-equilibration controlled multi-step transformations in (Mn, Fe)2(P, Si) alloys. J. Phys. D Appl. Phys. 2020, 53, 205303. [Google Scholar] [CrossRef]
- DThanh, T.C.; Brück, E.; Tegus, O.; Klaasse, J.C.P.; Buschow, K.H.J. Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe(P, Si, Ge). J. Mag. Mag. Mater. 2007, 310, e1012–e1014. [Google Scholar]
- Song, L.; Wang, G.F.; Ou, Z.Q.; Haschaolu, O.; Tegus, O.; Brück, E.; Buschow, K.H.J. Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5−xSix compounds. J. Alloys Compd. 2009, 474, 388–390. [Google Scholar] [CrossRef]
- Candini, A.; Moze, O.; Kockelmann, W.; Cadogan, J.M.; Brück, E.; Tegus, O. Revised magnetic phase diagram for FexMn5-xSi3 intermetallics. J. Appl. Phys. 2004, 95, 6819. [Google Scholar] [CrossRef]
Element (wt.%) | G0.0 | G0.1 | G0.3 | G0.5 | G0.6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R 1 | P 2 | R | P | B 3 | R | P | B | P | B | P | |
Mn | 9.15 | 23.96 | 20.58 | 32.55 | 21.43 | 27.19 | 31.33 | 21.02 | 34.43 | 24.24 | 31.55 |
Fe | 57.38 | 52.19 | 54.36 | 43.89 | 36.43 | 38.48 | 41.01 | 40.45 | 51.68 | 46.34 | 40.14 |
Co | 0.78 | 0.68 | 0.83 | 0.86 | 0.84 | 0.57 | 1.15 | 1.64 | 1.33 | 1.57 | 1.11 |
P | 4.49 | 15.85 | 1.16 | 14.95 | 0.88 | 0.49 | 12.29 | 1.00 | 6.82 | 0.88 | 15.29 |
Si | 28.20 | 7.33 | 20.5 | 5.16 | 3.60 | 13.22 | 6.36 | 1.59 | 1.31 | - | - |
Ge | - | - | 2.57 | 2.59 | 36.82 | 20.05 | 7.86 | 34.30 | 4.43 | 26.97 | 11.91 |
Property | Tc (K) | |△Sm| (J/kg·K) | RCP (J/kg) | |
---|---|---|---|---|
Alloys | ||||
Ge0.0 | 262 | 3.41 | 114.11 | |
Ge0.1 | 402/447 | 6.73/1.11 | 96.35/47.22 | |
Ge0.3 | 457/492 | 5.67/1.50 | 88.30/53.07 | |
Ge0.5 | 392/482 | 1.72/1.04 | 25.44/68.38 | |
Ge0.6 | 377/492 | 5.40/0.97 | 69.92/88.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.-Y.; Lee, M.-H.; Kim, S.-Y.; Han, J.; Kang, K.-H.; Kim, J.-W. Effect of Secondary Phases on Multi-Step Phase Transitions and Magnetocaloric Properties in MnFe-Based Alloys. Metals 2022, 12, 1967. https://doi.org/10.3390/met12111967
Lee A-Y, Lee M-H, Kim S-Y, Han J, Kang K-H, Kim J-W. Effect of Secondary Phases on Multi-Step Phase Transitions and Magnetocaloric Properties in MnFe-Based Alloys. Metals. 2022; 12(11):1967. https://doi.org/10.3390/met12111967
Chicago/Turabian StyleLee, A-Young, Min-Ha Lee, Song-Yi Kim, JunHee Han, Ki-Hoon Kang, and Jong-Woo Kim. 2022. "Effect of Secondary Phases on Multi-Step Phase Transitions and Magnetocaloric Properties in MnFe-Based Alloys" Metals 12, no. 11: 1967. https://doi.org/10.3390/met12111967
APA StyleLee, A.-Y., Lee, M.-H., Kim, S.-Y., Han, J., Kang, K.-H., & Kim, J.-W. (2022). Effect of Secondary Phases on Multi-Step Phase Transitions and Magnetocaloric Properties in MnFe-Based Alloys. Metals, 12(11), 1967. https://doi.org/10.3390/met12111967