Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures
Abstract
1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Tensile Tests and Results
2.3. Creep Tests and Results
2.4. Fatigue and Creep-Fatigue Tests and Results
3. Constitutive Model and Simulation Results of Experiments
3.1. Simulation Results of Tensile Experiments
3.2. Simulation Results of Creep Tests
3.3. Simulation of Fatigue and Creep-Fatigue Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaboche:, J.L. Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals. Bull. Acad. Polon. Sci. 1977, 25, 33–42. [Google Scholar]
- Armstrong, P.J.; Frederick, C.O. A Mathematical Representation of the Multiaxial Bauschinger Effect; CEGB Report RD/B/N/731; Berkeley Nuclear Laboratories, R&D Department: Berkeley, CA, USA, 1966; Volume 24, pp. 1–26. [Google Scholar]
- Chaboche, J.L.; Nouailhas, D. Constitutive modeling o ratcheting effects-Part I: Experimental facts and properties of the classical models. ASME J. Eng. Mat. Technol. 1989, 111, 384–392. [Google Scholar] [CrossRef]
- Ohno, N. Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Appl. Mech. Rev. 1990, 43, 283–295. [Google Scholar] [CrossRef]
- Chaboche, J.L. On some modification of kinematic hardening to improve the description of ratcheting effects. Int. J. Plast. 1991, 7, 661–678. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Jung, O. Application of a kinematic hardening viscoplasticity model with thresholds to the residual stress relaxation. Int. J. Plast. 1998, 13, 785–807. [Google Scholar] [CrossRef]
- Chaboche, J.L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989, 5, 247–302. [Google Scholar] [CrossRef]
- Wang, J.D.; Ohno, N. Two Equivalent Forms of Nonlinear Kinematic Hardening: Application to Nonisothermal Plasticity. Int. J. Plast. 1991, 7, 637–650. [Google Scholar] [CrossRef]
- Ohno, N.; Wang, J.D. Transformation of a nonlinear kinematic hardening rule to a multisurface form under isothermal and nonisothermal conditions. Int. J. Plast. 1991, 7, 879–891. [Google Scholar] [CrossRef]
- Abdel-Karim, M.; Ohno, N. Kinematic hardening model suitable for ratcheting with steady-state. Int. J. Plast. 2000, 16, 225–240. [Google Scholar] [CrossRef]
- Ohno, N.; Abdel-Karim, M. Uniaxial ratcheting of 316FR steel at room temperature, part II: Constitutive modeling and simulation. ASME J. Eng. Mat. Tech. 2000, 122, 35–41. [Google Scholar] [CrossRef]
- Brown, S.; Evans, R.W.; Wilshire, B. Creep strain and creep life prediction for the cast nickel-based superalloy IN-100. Mater. Sci. Eng. 1986, 84, 147–156. [Google Scholar] [CrossRef]
- Evans, R.W.; Wilshire, B. Creep of Metals and Alloys; Ztschrift Fur Met; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1985. [Google Scholar]
- Brown, S.; Evans, R.W.; Wilshire, B. A comparison of extrapolation techniques for long term creep strain and creep life prediction based on equations designed to represent creep curve shape. Int. J. Press. Vessel. Pip. 1986, 24, 251–268. [Google Scholar] [CrossRef]
- Rabotnov, Y.N. Some Problems of the Theory of Creep; Vestnik Moskov University: Moscow, Russia, 1948; pp. 81–91. [Google Scholar]
- Othman, A.M.; Hayhurst, D.R.; Dyson, B.F. Skeletal Point Stresses in Circumferentially Notched Tension Bars Undergoing Tertiary Creep Modelled with Physically Based Constitutive Equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 1993, 441, 343–358. [Google Scholar]
- Dyson, B.F.; Hayhurst, D.R.; Lin, J. The Ridged Uniaxial Testpiece: Creep and Fracture Predictions Using Large-Displacement Finite-Element Analyses. Proc. R. Soc. A Math. Phys. Eng. Sci. 1996, 452, 655–676. [Google Scholar]
- Mustata, R.; Hayhurst, D.R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 565–675 °C. Int. J. Press. Vessel. Pip. 2005, 82, 363–372. [Google Scholar] [CrossRef]
- Xu, Q. Development of constitutive equations for creep damage behavior under multi-axial states of stress. Adv. Mech. Behav. Plast. Damage 2000, 2, 1375–1382. [Google Scholar]
- Batsoulas, N.D. Mathematical description of the mechanical behavior of metallic materials under creep conditions. J. Mater. Sci. 1997, 32, 2511–2527. [Google Scholar] [CrossRef]
- Wilshire, B.; Scharning, P.J.; Hurst, R. A new approach to creep data assessment. Mater. Sci. Eng. 2009, 510, 3–6. [Google Scholar] [CrossRef]
- Whittaker, M.T.; Harrison, W.J.; Lancaster, R.J.; Williams, S. An analysis of modern creep lifing methodologies in the titanium alloy Ti6-4. Mater. Sci. Eng. A 2013, 577, 114–119. [Google Scholar] [CrossRef]
- Abdallah, Z.; Gray, V.; Whittaker, M.; Perkins, K. A Critical Analysis of the Conventionally Employed Creep Lifing Methods. Materials 2014, 7, 3371–3398. [Google Scholar] [CrossRef]
- Whittaker, M.T.; Harrison, W.J. Evolution of Wilshire equations for creep life prediction. High Temp. Technol. 2014, 31, 233–238. [Google Scholar] [CrossRef]
- Kobayashi, M.; Mukai, M.; Takahashi, H.; Ohno, N.; Kawakami, T.; Ishikawa, T. Implicit integration and consistent tangent modulus of a time-dependent non-unified constitutive model. Int. J. Numer. Methods Eng. 2003, 58, 1523–1543. [Google Scholar] [CrossRef]
- Ohguchi, K.I.; Sasaki, K.; Aso, S. Evaluation of Time-Independent and Time-Dependent Strains of Lead-Free Solder by Stepped Ramp Loading Test. ASME J. Electron. Packag. 2009, 131, 021003. [Google Scholar] [CrossRef]
- Panteghini, A.; Genna, F. Effects of the strain-hardening law in the numerical simulation of wire drawing processes. Comput. Mater. Sci. 2010, 49, 236–242. [Google Scholar] [CrossRef]
- Chen, W.; Wang, F.; Feng, M. Study of a modified non-unified model for time-dependent behavior of metal materials. Mech. Mater. 2017, 113, 69–76. [Google Scholar] [CrossRef]
- Gremaud, G. Overview on dislocation-point defect interaction: The brownian picture of dislocation motion. Mater. Sci. Eng. A 2004, 370, 191–198. [Google Scholar] [CrossRef]
- Yilmaz, A. The Portevin—Le Chatelier effect: A review of experimental findings. Sci. Technol. Adv. Mater. 2011, 12, 063001. [Google Scholar] [CrossRef]
- Cui, L.; Yu, J.; Liu, J.; Sun, X. Microstructural evolutions and fracture behaviors of a newly developed nickel-base superalloy during creep deformation. J. Alloys Compd. 2018, 746, 335–349. [Google Scholar] [CrossRef]
Element | Nb + Ta | Mo | Cr | Ni | Ti | Fe | Al | C | Si |
---|---|---|---|---|---|---|---|---|---|
Wt% | 5.04 | 3.12 | 19.70 | 51.70 | 1.01 | — | 0.42 | 0.039 | 0.15 |
c1 | c2 | b1 | C1 | n1 | C2 | n2 | C3 | n3 |
---|---|---|---|---|---|---|---|---|
1.0776 × 10−8 | 5.8129 | 2.8489 | 5.5468 × 10−17 | 3.3655 | 1.2997 × 10−13 | 2.2323 | 2.7304 × 10−21 | 4.7467 |
σy0 | R0 | R∞ | b |
---|---|---|---|
630 | −8 | −195 | 4 |
μ0 | C1 | C2 |
---|---|---|
0.05 | 0.0475 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Zhuang, S.; Zheng, H.; Zhao, Z.; Jia, X. Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures. Metals 2022, 12, 1868. https://doi.org/10.3390/met12111868
Hu X, Zhuang S, Zheng H, Zhao Z, Jia X. Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures. Metals. 2022; 12(11):1868. https://doi.org/10.3390/met12111868
Chicago/Turabian StyleHu, Xuteng, Shuying Zhuang, Haodong Zheng, Zuopeng Zhao, and Xu Jia. 2022. "Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures" Metals 12, no. 11: 1868. https://doi.org/10.3390/met12111868
APA StyleHu, X., Zhuang, S., Zheng, H., Zhao, Z., & Jia, X. (2022). Non-Unified Constitutive Models for the Simulation of the Asymmetrical Cyclic Behavior of GH4169 at Elevated Temperatures. Metals, 12(11), 1868. https://doi.org/10.3390/met12111868