Study of the Precipitation Kinetics, Microstructures, and Mechanical Properties of Al-Zn-Mg-xCu Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Age Hardening
3.2. Mechanical Properties
3.3. Microstructure
4. Discussion
4.1. Effects of Cu Addition on Precipitation Kinetics
4.2. Model of Strengthening
4.3. Fracture Analysis
5. Conclusions
- (1)
- For Al-Zn-Mg-xCu alloys, the age-hardening rate increased and the peak hardness increased initially and then decreased with aging temperature increase from 378 to 393 K. The time to reach the peak hardness decreased, the peak hardness increased, the dimple density decreased, and the plateau area fraction increased with increasing Cu content from 0.24 to 0.91% at aging temperatures of 378, 393, or 408 K.
- (2)
- The experiments and Arrhenius kinetic calculation indicate that the increase in temperature and Cu content promoted the reaction rate k and decreased the activation energy Ea, which was accompanied by an increase in the volume fraction of the η’ phase.
- (3)
- The simulation yield strength is consistent with experimental yield strength when the mass fraction of Cu is 0.43 and 0.91%. The contribution of Cu content to yield strength was predominantly due to precipitation strengthening rather than grain boundary strengthening and solid solution strengthening.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, J.C.; Starke, E.A. Progress in structural materials for aerospace systems. The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Freiberg, D.; Zhu, W.; Park, J.-S.; Almer, J.D.; Sanders, P. Precipitate Characterization in Model Al-Zn-Mg-(Cu) Alloys Using Small-Angle X-ray Scattering. Met.-Open Access Metall. J. 2020, 10, 959. [Google Scholar] [CrossRef]
- Yuan, M.; Deng, Y.; Lin, S.; Guo, X.; Xie, Y. Effect of the Cross Accumulative Roll Bonding on the Corrosion Behaviour of AA6082/AA7204 Composite Sheets. Met. Mater. Int. 2021, 27, 3709–3719. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Shi, D.; Dong, X.; Shi, X.; Li, C.; Zhao, J.; Dai, H. Enhancing the Corrosion Resistance and Mechanical Properties of a High-Alloying Al-Zn-Mg-Cu-Zr Alloy by Ce Addition and Aging Treatment. Met.-Open Access Metall. J. 2020, 10, 1318. [Google Scholar] [CrossRef]
- Li, H.; Cao, F.; Guo, S.; Jia, Y.; Zhang, D.; Liu, Z.; Wang, P.; Scudino, S.; Sun, J. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys. J. Alloy. Compd. 2017, 719, 89–96. [Google Scholar] [CrossRef]
- Dong, P.; Chen, S.; Chen, K. Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy. J. Alloy. Compd. 2019, 788, 329–337. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Lu, B.; Yu, W.; Wang, H.; Xu, G.; Wang, Z. Effect of Cu content and Zn/Mg ratio on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys. J. Mater. Res. Technol. 2022, 19, 3451–3460. [Google Scholar] [CrossRef]
- Sun, Y.; Pan, Q.; Sun, Y.; Wang, W.; Huang, Z.; Wang, X.; Hu, Q. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy. J. Alloy. Compd. 2019, 783, 329–340. [Google Scholar] [CrossRef]
- Deschamps, A.; Bréchet, Y.; Livet, F. Influence of copper addition on precipitation kinetics and hardening in Al-Zn-Mg alloy. Mater. Sci. Technol. 1999, 15, 993–1000. [Google Scholar] [CrossRef]
- Wang, T.; Yin, Z.; Shen, K.; Li, J.; Huang, J.-W. Single-aging characteristics of 7055 aluminum alloy. Trans. Nonferrous Met. Soc. China 2007, 17, 548–552. [Google Scholar] [CrossRef]
- Shu, W.; Hou, L.; Zhang, C.; Zhang, F.; Liu, J.; Zhuang, L.; Zhang, J. Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al–Zn–Mg–Cu alloys. Mater. Sci. Eng. A 2016, 657, 269–283. [Google Scholar] [CrossRef]
- Jiao, H.; Chen, K.; Chen, S.; Yang, Z.; Xie, P.; Chen, S. Effect of Cu on the Fracture and Exfoliation Corrosion Behavior of Al-Zn-Mg-xCu Alloy. Met.-Open Access Metall. J. 2018, 8, 48. [Google Scholar] [CrossRef]
- Fang, X.; Du, Y.; Song, M.; Li, K.; Jiang, C. Effects of Cu content on the precipitation process of Al-Zn-Mg alloys. J. Mater. Sci. 2012, 47, 8174–8187. [Google Scholar] [CrossRef]
- Chinh, N.; Lendvai, J.; Ping, D.; Hono, K. The effect of Cu on mechanical and precipitation properties of AI-Zn-Mg alloys. J. Alloy. Compd. 2004, 378, 52–60. [Google Scholar] [CrossRef]
- Khalfallah, A. Precipitation kinetics of GP zones, metastable η′ phase and equilibrium η phase in Al−5.46wt.%Zn−1.67wt.%Mg alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 233–241. [Google Scholar] [CrossRef]
- Fang, W.; Zhao, Z.; Bai, P.; Zhou, T.; Liu, P.; Zhang, Y.; Chen, C. Influence of Lithium on the Kinetics of the Microstructural Transformations in 7075-Li Alloy. Rare Met. Mater. Eng. 2004, 33, 945–948. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.J.; Poole, W.J. Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111. Acta Mater. 2003, 51, 3467–3481. [Google Scholar] [CrossRef]
- Liao, Y.-G.; Han, X.-Q.; Zeng, M.-X.; Jin, M. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy. Mater. Des. 2015, 66, 581–586. [Google Scholar] [CrossRef]
- BS-EN-ISO-6892-2; Standards, I. Metallic Materials; Tensile Testing; Part 1: Method Of Testing (at Ambient Temperature). British Standards Institution: London, UK, 2011.
- Weidlein, E.R. Industrial Changes Due to Chemistry. Ann. Am. Acad. Political Soc. Sci. 1928, 139, 15–33. [Google Scholar] [CrossRef]
- Marlaud, T.; Deschamps, A.; Bley, F.; Lefebvre, W.; Baroux, B. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys. Acta Mater. 2010, 58, 248–260. [Google Scholar] [CrossRef]
- Dumont, D.; Deschamps, A.; Brechet, Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Mater. Sci. Eng. A 2003, 356, 326–336. [Google Scholar] [CrossRef]
- Nie, J.F.; Muddle, B.C.; Polmear, I.J. The Effect of Precipitate Shape and Orientation on Dispersion Strengthening in High Strength Aluminium Alloys. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 1996; pp. 1257–1262. [Google Scholar]
- Li, G.; Ding, H.; Wang, J.; Zhang, N.; Hou, H. Superplastic Tensile Deformation Behavior and Microstructural Evolution of Al–Zn–Mg–Cu Alloy. Met.-Open Access Metall. J. 2019, 9, 941. [Google Scholar] [CrossRef]
- Fan, Y.; Tang, X.; Wang, S.; Chen, B. Comparisons of Age Hardening and Precipitation Behavior in 7075 Alloy under Single and Double-Stage Aging Treatments. Met. Mater. Int. 2021, 27, 4204–4215. [Google Scholar] [CrossRef]
- Yao, D.; Bai, Z.; Qiu, F.; Li, Y.; Jiang, Q. Effects of La on the age hardening behavior and precipitation kinetics in the cast Al–Cu alloy. J. Alloy. Compd. 2012, 540, 154–158. [Google Scholar] [CrossRef]
- Lin, L.Q.; Li, R.; Wang, W.; Nie, Z.R. Monte Carlo simulation of effect of Mg and Cu on precipitation of Al-Zn-Mg alloys during initial ageing stage. Chin. J. Nonferrous Met. 2012, 6, 288–293. [Google Scholar] [CrossRef]
- Starink, M.J.; Wang, S.C. A model for the yield strength of Al-Zn-Mg-Cu alloys. Acta Mater. 2003, 51, 5131–5150. [Google Scholar] [CrossRef]
- Dixit, M.; Mishra, R.S.; Sankaran, K.K. Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Mater. Sci. Eng. A 2007, 478, 163–172. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Miura, H. Ultrafine Grain Formation in Ferritic Stainless Steel during Severe Plastic Deformation. Metall. Mater. Trans. A 2008, 39, 2206. [Google Scholar] [CrossRef]
- Li, Y.S.; Tao, N.R.; Lu, K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008, 56, 230–241. [Google Scholar] [CrossRef]
- Viatkina, E.M.; Brekelmans, W.A.M.; Geers, M.G.D. Modelling of the internal stress in dislocation cell structures. Eur. J. Mech.-A/Solids 2007, 26, 982–998. [Google Scholar] [CrossRef]
- Marthinsen, K.; Nes, E. A general model for metal plasticity. Mater. Sci. Eng. A 1997, 234, 1095–1098. [Google Scholar] [CrossRef]
- Nes, E.; Pettersen, T.; Marthinsen, K. On the mechanisms of work hardening and flow-stress saturation. Scr. Mater. 2000, 43, 55–62. [Google Scholar] [CrossRef]
- Vratnica, M.; Cvijović, Z.; Degischer, H.P.; Requena, G.C. The effect of coarse intermetallic particles on the fracture process in forged 7000 alloys. J. Microsc. 2010, 224, 117–120. [Google Scholar] [CrossRef]
- Tiryakioglu, M.J., Jr.; Campbell, J. The effect of structural integrity on the tensile deformation characteristics of A206-T71 alloy castings. Mater. Sci. Eng. A 2008, 487, 383–387. [Google Scholar] [CrossRef]
Alloy | Zn | Mg | Cu | Fe | Si | Cr | Al |
---|---|---|---|---|---|---|---|
A | 5.05 | 2.64 | 0.24 | 0.02 | 0.02 | 0.40 | Bal. |
B | 5.09 | 2.63 | 0.43 | 0.02 | 0.04 | 0.38 | Bal. |
C | 5.03 | 2.65 | 0.91 | 0.02 | 0.02 | 0.41 | Bal. |
Aging Temperature/K | 378 | 393 | 408 | ||||||
---|---|---|---|---|---|---|---|---|---|
x/wt.% of Cu | 0.24 | 0.43 | 0.91 | 0.24 | 0.43 | 0.91 | 0.24 | 0.43 | 0.91 |
Aging time/h | 37 ± 2.0 | 34 ± 2.0 | 30 ± 1.5 | 33 ± 2.0 | 31 ± 2.0 | 26 ± 1.5 | 26 ± 1.5 | 20 ± 1.5 | 14 ± 1.0 |
Peak hardness/HV3 | 164.2 ± 0.2 | 170.5 ± 0.4 | 176.2 ± 0.1 | 169.5 ± 0.1 | 172.2 ± 0.3 | 180.0 ± 0.5 | 160.3 ± 0.6 | 164.9 ± 0.9 | 172.4 ± 0.5 |
Alloy | Zn | Mg | Cu | Cr | Al |
---|---|---|---|---|---|
A (x = 0.24 wt.%) | 10.00 ± 2.40 | 8.67 ± 0.30 | 0.54 ± 0.20 | 10.73 ± 0.11 | Bal. |
B (x = 0.43 wt.%) | 9.67 ± 2.53 | 9.74 ± 0.31 | 1.50 ± 0.31 | 10.02 ± 0.15 | Bal. |
C (x = 0.91 wt.%) | 9.65 ± 2.51 | 8.02 ± 0.25 | 2.45 ± 0.22 | 10.76 ± 0.12 | Bal. |
Alloy | 378 K | 393 K | 408 K |
---|---|---|---|
A (x = 0.24 wt.%) | |||
B (x = 0.43 wt.%) | |||
C (x = 0.91 wt.%) |
Alloy | δ (μm) | Dr (μm) | fReX (%) | ∆σgb (MPa) |
---|---|---|---|---|
A (x = 0.24 wt.%) | 14.25 | 23.14 | 81.2 | 0.77 |
B (x = 0.43 wt.%) | 11.72 | 20.09 | 46.1 | 1.10 |
C (x = 0.91 wt.%) | 11.25 | 14.77 | 87.1 | 1.13 |
Alloy | Zn | Mg | Cu | τss (MPa) |
---|---|---|---|---|
A (x = 0.24 wt.%) | 5.72 | 2.43 | 0.40 | 53.63 |
B (x = 0.43 wt.%) | 5.21 | 2.12 | 0.49 | 50.80 |
C (x = 0.91 wt.%) | 5.29 | 2.44 | 0.81 | 57.29 |
Alloy | d (nm) | Nv/μm3 | τp (MPa) |
---|---|---|---|
A (x = 0.24 wt.%) | 4.16 | 5.92 × 104 | 47.30 |
B (x = 0.43 wt.%) | 4.08 | 9.96 × 104 | 60.98 |
C (x = 0.91 wt.%) | 3.91 | 1.53 × 105 | 73.13 |
Alloys | σy (MPa) | E (GPa) | L (μm) | fIM (vol %) | AAp | AAt | WPFZs (μm) | λ (μm) | KIC (MPa·m1/2) |
---|---|---|---|---|---|---|---|---|---|
A (x = 0.24 wt.%) | 439.9 | 69 | 0.0455 | 0.305 | 0.005 | 0.448 | 0.0268 | 47.23 | 51.44 |
B (x = 0.43 wt.%) | 444.4 | 69 | 0.0756 | 0.467 | 0.010 | 0.384 | 0.0328 | 42.51 | 49.61 |
C (x = 0.91 wt.%) | 480.6 | 69 | 0.0841 | 0.521 | 0.024 | 0.396 | 0.0259 | 37.54 | 41.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, A.; Sun, L.; Deng, Y.; Yuan, M. Study of the Precipitation Kinetics, Microstructures, and Mechanical Properties of Al-Zn-Mg-xCu Alloys. Metals 2022, 12, 1610. https://doi.org/10.3390/met12101610
Tian A, Sun L, Deng Y, Yuan M. Study of the Precipitation Kinetics, Microstructures, and Mechanical Properties of Al-Zn-Mg-xCu Alloys. Metals. 2022; 12(10):1610. https://doi.org/10.3390/met12101610
Chicago/Turabian StyleTian, Aiqin, Lin Sun, Yunlai Deng, and Manfa Yuan. 2022. "Study of the Precipitation Kinetics, Microstructures, and Mechanical Properties of Al-Zn-Mg-xCu Alloys" Metals 12, no. 10: 1610. https://doi.org/10.3390/met12101610
APA StyleTian, A., Sun, L., Deng, Y., & Yuan, M. (2022). Study of the Precipitation Kinetics, Microstructures, and Mechanical Properties of Al-Zn-Mg-xCu Alloys. Metals, 12(10), 1610. https://doi.org/10.3390/met12101610