Design, Simulation and Optimization of an Additive Laser-Based Manufacturing Process for Gearbox Housing with Reduced Weight Made from AlSi10Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Modification of the Gear Housing
4. Characterization of Powder Aluminum Material
5. Optimization of the Laser Synthesis Process of the Gearbox Housing
5.1. Energy Thermal Calculation
5.2. Optimization of Laser Synthesis Modes
5.3. Simulation of the SLM Process
6. Results of 3D Laser Growing of the Gearbox Housing
6.1. Regimes of 3D Printing
6.2. Metallographic Analysis of Grown Samples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandt, M.; Sun, S.J.; Leary, M.; Feih, S.; Elambasseril, J.; Liu, Q.C. High-Value SLM Aerospace Components: From Design to Manufacture. Adv. Mater. Res. 2013, 633, 135–147. [Google Scholar] [CrossRef]
- Stolt, R.; Elgh, F.; Heikkinen, T. Design and Evaluation of Aerospace Components for SLM. In Transdisciplinary Engineering for Complex Socio-Technical Systems; IOS Press: Amsterdam, The Netherlands, 2019; Volume 10, pp. 157–166. [Google Scholar] [CrossRef]
- Kurzynowski, T.; Pawlak, A.; Smolina, I. The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch. Civ. Mech. Eng. 2020, 20, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Seabra, M.; Azevedo, J.; Araújo, A.; Reis, L.; Pinto, E.; Alves, N.; Santos, R.; Mortágua, J.P. Selective laser melting (SLM) and topology optimization for lighter aerospace componentes. Procedia Struct. Integr. 2016, 1, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Barroqueiro, B.; Andrade-Campos, A.; Valente, R.; Neto, V. Metal Additive Manufacturing Cycle in Aerospace Industry: A Comprehensive Review. J. Manuf. Mater. Process. 2019, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, S.M.; Cutler, S.; Gao, N. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals 2019, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2132–2147. [Google Scholar] [CrossRef]
- Vasiliev, B.E.; Salnikov, A.V.; Magerramova, L.A.; Isakov, V.V.; Semenov, A.V.; Shadrin, D.V.; Popov, A.A. Development of hollow disks for reducing the mass of promising engines. In Strength and Reliability of Gas Turbine Engines; Nozhnitskiy, Y.A., Ed.; CIAM: Moscow, Russia, 2020; pp. 157–165. [Google Scholar]
- Salwan, G.K.; Subbarao, R.; Mondal, S. Comparison and selection of suitable materials applicable for gas turbine blades. Mater. Today Proc. 2021, 46, 8864–8870. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies, 3rd ed.; Springer: Cham, Switzerland, 2021; p. 698. [Google Scholar] [CrossRef]
- Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 2018, 35, 270–284. [Google Scholar] [CrossRef]
- Buchbinder, D.; Schleifenbaum, J.H.; Heidrich, S.; Meiners, W.; Bültmann, J. High Power Selective Laser Melting (HP SLM) of Aluminum Parts. Phys. Procedia 2011, 12, 271–278. [Google Scholar] [CrossRef]
- Olakanmi, E.O.; Cochrane, R.; Dalgarno, K. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Ponnusamy, P.; Rahman Rashid, R.A.; Masood, S.H.; Ruan, D.; Palanisamy, S. Mechanical Properties of SLM-Printed Aluminium Alloys: A Review. Materials 2020, 13, 4301. [Google Scholar] [CrossRef] [PubMed]
- Morgunov, Y.A.; Saushkin, B.P. Additive technologies for aerospace engineering. Addit. Technol. 2016, 1, 30–38. [Google Scholar]
- Tickoo, S. ANSYS Workbench 2019 R2: A Tutorial Approach, 3rd ed.; CADCIM Technologies: Schererville, IN, USA, 2019; p. 416. [Google Scholar]
- Rudsky, A.I. (Ed.) Metal Powders of Aluminum, Magnesium, Titanium and Silicon. Consumer Properties and Applications; Publishing House of the Polytechnic University: Saint Petersburg, Russia, 2012; p. 356. [Google Scholar]
- Andrianov, I.V.; Barantsev, R.G.; Manevich, L.I. Asymptotic Mathematics and Synergetics: The Path to Holistic Simplicity; Unitorial USSR: Moscow, Russia, 2004; p. 304. [Google Scholar]
- Rykalin, N.N.; Uglov, A.A.; Zuev, I.V.; Kokora, A.N. Laser and Electron-Beam Processing of Materials; Mashinostroenie: Moscow, Russia, 1985; p. 496. [Google Scholar]
- Ankudinov, V.E.; Krivilev, M.D. Theoretical Analysis of the Dependence of Thermophysical Characteristics on Porosity. Bull. Udmurt Univ. Phys. Chem. 2012, 4, 3–8. [Google Scholar]
- Dynin, N.; Zavodov, A.; Oglodkov, M.; Khasikov, D. The influence of process parameters of selective laser melting on the structure of aluminum alloy Al–Si–Mg system. All-Russian scientific research institute of aviation materials. Proc. VIAM 2017. [Google Scholar] [CrossRef]
- Altair University. Available online: https://altairuniversity.com/inspire-3dprint-2/ (accessed on 1 December 2021).
- Prashanth, K.; Eckert, J. Formation of metastable cellular microstructures in selective laser melted alloys. J. Alloy. Compd. 2017, 707, 27–34. [Google Scholar] [CrossRef]
- Raza, T.; Andersson, J.; Svensson, L.-E. Varestraint Testing of Selective Laser Additive Manufactured Alloy 718—Influence of Grain Orientation. Metals 2019, 9, 1113. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Han, H.N.; Kim, C. Microstructure and Solidification Crack Susceptibility of Al 6014 Molten Alloy Subjected to a Spatially Oscillated Laser Beam. Materials 2018, 11, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiaasiaan, R.; Amirkhiz, B.S.; Shankar, S. Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys. Mater. Sci. Eng. A 2017, 698, 206–217. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, J.; Ni, D.; Wang, D.; Xiao, B.; Ma, Z. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment. J. Mater. Sci. Technol. 2021, 108, 226–235. [Google Scholar] [CrossRef]
- DNVGL-CG-0197 Additive manufacturing—Qualification and certification process for materials and components. Available online: https://rules.dnv.com/docs/pdf/DNV/CG/2017-11/DNVGL-CG-0197.pdf (accessed on 1 December 2021).
- DNVGL-CP-0267 Additive Manufacturing. Available online: https://turkubusinessregion.com/wp-content/uploads/2019/11/DNVGL-CP-0267.pdf (accessed on 1 December 2021).
Area | Strength Properties: Initial/Modified | ||
---|---|---|---|
von Mieses Stress σeqv, (MPa) | Strain ε eqv, (%·10−2) | Displacement, usum, (mm·10−3) | |
I | 11.95/48.71 | 1.69/5.39 | 14.3/35.4 |
II | 14.34/15.72 | 2.08/2.30 | 80.7/14.1 |
III | 12.30/14.59 | 2.22/2.50 | 65.0/88.1 |
Spectrum Mark | Element Content, (wt.%) | |||||
---|---|---|---|---|---|---|
Surface, Figure 2a | Cross-Section, Figure 2b | |||||
Al | Si | Mg | Al | Si | Mg | |
0.1 | 89.18 | 10.39 | 0.42 | 90.26 | 9.47 | 0.27 |
0.2 | 82.98 | 16.82 | 0.20 | 89.25 | 10.45 | 0.30 |
0.3 | 89.91 | 9.71 | 0.38 | 89.76 | 9.98 | 0.26 |
0.4 | 89.17 | 10.37 | 0.46 | 94.4 | 5.41 | 0.19 |
0.5 | 90.03 | 9.59 | 0.38 | 89.91 | 9.76 | 0.33 |
Average | 88.26 | 11.38 | 0.37 | 90.72 | 9.014 | 0.27 |
Designation and Units | Parameter | Value | Comments |
---|---|---|---|
λ, W/(m × °C) | Thermal conductivity | 11.4 | λ′ = 4.56 |
∆T, °C | Melting interval | 780–800 | - |
ρ, kg/m3 | Density | 2800 | ρ′ = 3 276 |
C, J/(kg × °C) | Specific heat | 1.05 | C′ = 1.74 |
Designation and Units | Parameter | Value | Comments |
---|---|---|---|
W, W | Laser beam power | 200–400 | α = 0.8 |
d, m | Spot diameter | (0.08–0.1) × 10−3 | |
WL, W/m2 | Power density | 6.3 × 107 | |
ν, m/s | Beam travel speed | (2–6) × 10−3 | |
τ, s | Exposure time | (60–90) × 10−3 |
Scanning Speed (V), (mm/s) | Power (W), (W) | Step (b), (μm) | Number of Samples | |
---|---|---|---|---|
Orientation on the Platform | ||||
XY | Z | |||
950, 1000, 1050 | 138, 145, 152 | 82 | 36 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magerramova, L.; Isakov, V.; Shcherbinina, L.; Gukasyan, S.; Petrov, M.; Povalyukhin, D.; Volosevich, D.; Klimova-Korsmik, O. Design, Simulation and Optimization of an Additive Laser-Based Manufacturing Process for Gearbox Housing with Reduced Weight Made from AlSi10Mg Alloy. Metals 2022, 12, 67. https://doi.org/10.3390/met12010067
Magerramova L, Isakov V, Shcherbinina L, Gukasyan S, Petrov M, Povalyukhin D, Volosevich D, Klimova-Korsmik O. Design, Simulation and Optimization of an Additive Laser-Based Manufacturing Process for Gearbox Housing with Reduced Weight Made from AlSi10Mg Alloy. Metals. 2022; 12(1):67. https://doi.org/10.3390/met12010067
Chicago/Turabian StyleMagerramova, Liubov, Vladimir Isakov, Liana Shcherbinina, Suren Gukasyan, Mikhail Petrov, Daniil Povalyukhin, Darya Volosevich, and Olga Klimova-Korsmik. 2022. "Design, Simulation and Optimization of an Additive Laser-Based Manufacturing Process for Gearbox Housing with Reduced Weight Made from AlSi10Mg Alloy" Metals 12, no. 1: 67. https://doi.org/10.3390/met12010067
APA StyleMagerramova, L., Isakov, V., Shcherbinina, L., Gukasyan, S., Petrov, M., Povalyukhin, D., Volosevich, D., & Klimova-Korsmik, O. (2022). Design, Simulation and Optimization of an Additive Laser-Based Manufacturing Process for Gearbox Housing with Reduced Weight Made from AlSi10Mg Alloy. Metals, 12(1), 67. https://doi.org/10.3390/met12010067