Structural Characterization, Global and Local Electrochemical Activity of Electroless Ni–P-Multiwalled Carbon Nanotube Composite Coatings on Pipeline Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Coating Preparation
2.2. Structural, Morphological and Adhesion Characterization
2.3. Global and Local Electrochemical Tests
3. Results
3.1. X-ray Diffraction
3.2. SURFACE and Cross-Section Morphology
3.3. Scratch Tests
3.4. Global Electrochemical Tests
3.5. Scanning Electrochemical Microscopy (SECM)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanguy, B.; Luu, T.T.; Perrin, G.; Pineau, A.; Besson, J. Plastic and damage behavior of a high strength API5L X100 pipeline steel: Experiments and modeling. Int. J. Press. Vessel. Pip. 2005, 85, 322–335. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Cui, Z.Y.; Li, X.G.; Du, C.W.; Xing, Y.Y. Mechanistic aspect of stress corrosion cracking of X0 pipeline steel under non-stable cathodic polarization. Electrochem. Commun. 2014, 48, 127–129. [Google Scholar] [CrossRef]
- Ituen, E.B.; Asuquo, J.E. Inhibition of X80 steel corrosion in oilfield acidizing environment using 3-(2-chloro-5,6-dihydrobenzol[b][1]benzazepin-11-yl-)-N,N-dimethylpropan-1-amine and its blends. J. King Saud Univ. Sci. 2019, 31, 127–135. [Google Scholar] [CrossRef]
- Xie, F.; Li, X.; Wang, D.; Wu, M.; Sun, D. Synergistic effect of sulphate-reducing bacteria and external tensile stress on the corrosion behavior of X80 pipeline steel in neutral soil environment. Eng. Fail. Anal. 2018, 91, 383–396. [Google Scholar] [CrossRef]
- Islam, M.d.A.; Farhat, Z.N. Mechanical and electrochemical synergism of API X42 pipeline steel during erosion-corrosion. J. Bio. Tribo. Corros. 2015, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Wu, Y.; Long, D. Salt spray corrosion resistance of aluminized coatings on X70 pipeline steel by laser thermal radiation. Rare Met. Mat. Eng. 2014, 43, 2083–2088. [Google Scholar] [CrossRef]
- Zeinoddini, M.; Mo’tamedi, M.; Zandi, A.P.; Talebi, M.; Shariati, M.; Ezzati, M. On the ratcheting of defective low-alloy, high-strength steel pipes (API-5L X80) under cyclic bending: An experimental study. Int. J. Mech. Sci. 2017, 130, 518–533. [Google Scholar] [CrossRef]
- Yang, X.-H.; Zhu, W.-L.; Lin, Z.; Huo, J.-J. Aerodynamic evaluation of an internal epoxy coating in nature gas pipeline. Prog. Org. Coat. 2005, 54, 73–77. [Google Scholar] [CrossRef]
- Wang, C.; Farhat, Z.; Jarjoura, G.; Hassan, M.K.; Abdullah, A.M. Indentation and bending behavior of electroless Ni-P-Ti composite coatings on pipeline steel. Surf. Coat. Technol. 2018, 334, 243–252. [Google Scholar] [CrossRef]
- Darmiani, E.; Danaee, I.; Rashed, G.R.; Zaarei, D. Formulation and study of corrosion prevention behavior of epoxy cerium nitrate-montmorillonite nanocomposite coated carbon steel. J. Coat. Technol. Res. 2013, 10, 493–502. [Google Scholar] [CrossRef]
- Abdou, M.I.; Ayad, M.I.; Diab, A.S.M.; Hassan, I.A.; Fadl, A.M. Influence of surface modified ilmenite/melamine formaldehyde composite on the anti-corrosion and mechanical properties of conventional polyamine cured epoxy for internal coating of gas and oil transmission pipelines. Prog. Org. Coat. 2017, 113, 1–14. [Google Scholar] [CrossRef]
- Krishnan, K.H.; John, S.; Srinivasan, K.N.; Praveen, J.; Ganesan, M.; Kavimani, P.M. An overall aspect of electroless Ni-P depositions—A review article. Metall. Mater. Trans. A 2006, 37, 1917–1926. [Google Scholar] [CrossRef]
- Fayyad, E.M.; Abdullah, A.M.; Hassan, M.K.; Mohamed, A.M.; Wang, C.; Jarjoura, G.; Farhat, Z. Synthesis, characterization, and application of novel Ni-P-carbon nitride nanocomposites. Coatings 2018, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.C.L.; Correa, O.V.; Ett, B.; Sayeg, I.J.; Lima, N.B.; Antunes, R.A. Influence of the tungsten content on surface properties of electroless Ni-W-P coatings. Mater. Res. 2018, 21, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Goettems, F.S.; Ferreira, J.Z. Wear behavior of electroless heat treated Ni-P coatings as alternative to electroplated hard chromium deposits. Mater. Res. 2017, 20, 1300–1308. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Sahoo, P. Optimization of electroless Ni-P-W coatings for minimum friction and wear using grey-Taguchi method. J. Coat. 2013, 2013, 608140. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Zhang, S.T.; Dryfe, R. A study of corrosion performance of electroless Ni-P and Ni-W-P coatings on AZ91D magnesium alloy. Materialwiss. Werkst. 2011, 42, 833–837. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Selvi, V.E.; William Grips, V.K.; Rajam, K.S. Electrochemical studies on electroless ternary and quaternary Ni-P based alloys. Electrochim. Acta 2006, 52, 1064–1074. [Google Scholar] [CrossRef]
- Cissé, M.; Abouchane, M.; Anik, T.; Himm, K.; Belakhimima, R.A.; Touhami, M.E.; Touir, R.; Amiar, A. Corrosion resistance of electroless Ni-Cu-P ternary alloy coatings in acidic and neutral corrosive mediums. Int. J. Corros. 2010, 2010, 246908. [Google Scholar] [CrossRef] [Green Version]
- Sadreddini, S.; Afshar, A. The effect of heat treatment on properties of Ni-P-SiO2 nano-composite coating. Prot. Met. Phys. Chem. Surf. 2016, 52, 492–499. [Google Scholar] [CrossRef]
- Islam, M.; Azhar, M.R.; Khalid, Y.; Khan, R.; Abdo, H.S.; Dar, M.A.; Oloyede, O.R.; Burleigh, T.D. Electroless Ni-P/SiC nanocomposite coatings with small amounts of SiC nanoparticles for superior corrosion resistance and hardness. J. Mater. Eng. Perform. 2015, 24, 4835–4843. [Google Scholar] [CrossRef]
- Gadhari, P.; Sahoo, P. Study of wear behavior of Ni-P-TiO2 composite coatings by optimizing coating parameters. Mater.Today: Proc. 2017, 4, 1883–1892. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Zhou, C.; Xu, H.; Gao, W. Fabrication and characterization of electroless Ni-P-ZrO2 nano-composite coatings. Appl. Nanosci. 2011, 1, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Araghi, A.; Paydar, M.H. Wear and corrosion characteristics of electroless Ni-W-P-B4C and Ni-P-B4C coatings. Tribol. Mater. Surf. Interfaces 2014, 8, 146–153. [Google Scholar] [CrossRef]
- Chen, X.H.; Peng, J.C.; Li, X.Q.; Deng, F.M.; Wang, J.X.; Li, W.Z. Tribological behavior of carbon nanotubes-reinforced nickel matrix composite coatings. J. Mater. Sci. Lett. 2001, 20, 2057–2060. [Google Scholar] [CrossRef]
- Meng, Z.-Q.; Li, X.-B.; Xiong, Y.-J.; Zhan, J. Preparation and tribological performances of Ni-P-multiwalled carbon nanotubes composite coatings. Trans. Nonferrous Met. Soc. China 2012, 22, 2719–2725. [Google Scholar] [CrossRef]
- Zarebidaki, A.; Allahkaram, S.R. Effect of surfactant on the fabrication and characterization of Ni–P–CNT composite coating. J. Alloy. Compd. 2011, 509, 1836–1840. [Google Scholar] [CrossRef]
- Alishahi, M.; Monirvaghefi, S.M.; Saatchi, A.; Hosseini, S.M. The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni-P-CNT composite coating. Appl. Surf. Sci. 2012, 258, 2430–2446. [Google Scholar] [CrossRef]
- Chen, X.H.; Chen, C.S.; Xiao, H.N.; Cheng, F.Q.; Zhang, G.; Yi, G.J. Corrosion behavior of carbon nanotubes-Ni composite coating. Surf. Coat. Technol. 2005, 191, 351–356. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, H.; Li, M.K.; Shi, Y.L.; Huang, Y.; Li, H.L. Preparation and properties of Ni/P/single-walled carbon nanotubes composite coatings by means of electroless plating. Thin Solid Films 2004, 466, 86–91. [Google Scholar] [CrossRef]
- Marques, A.G.; Izquierdo, J.; Souto, R.M.; Simões, A.M. SECM imaging of the cut edge corrosion of galvanized steel as a function of pH. Electrochim. Acta 2015, 153, 238–245. [Google Scholar] [CrossRef]
- Singh, A.; Ansari, K.R.; Kumar, A.; Liu, W.; Chen, S.; Lin, Y. Electrochemical, surface and quantum Chemical studies of novel imidazole derivatives as corrosion inhibitors for J55 steel in sweet corrosive environment. J. Alloys Compd. 2017, 712, 121–133. [Google Scholar] [CrossRef]
- Yin, Y.; Niu, L.; Lu, M.; Guo, W.; Chen, S. In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope. Appl. Surf. Sci. 2008, 255, 9193–9199. [Google Scholar] [CrossRef]
- Paik, C.H.; White, H.S.; Alkire, R.C. Scanning electrochemical microscopy detection of dissolved sulfur species from inclusions in stainless steel. J. Electrochem. Soc. 2000, 147, 4120–4124. [Google Scholar] [CrossRef]
- Xia, D.-H.; Wang, J.; Wu, Z.; Qin, Z.; Xu, L.; Hu, W.; Behnamian, Y.; Luo, J.-L. Sensing corrosion within an artificial defect in organic coating using SECM. Sens. Actuators B 2019, 280, 235–242. [Google Scholar] [CrossRef]
- Bastos, A.C.; Simões, A.M.; González, S.; González-García, Y.; Souto, R.M. Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope. Electrochem. Commun. 2004, 6, 1212–1215. [Google Scholar] [CrossRef]
- Völker, E.; Inchauspe, C.G.; Calvo, E.J. Scanning electrochemical microscopy measurement of ferrous ion fluxes during localized corrosion of steel. Electrochem. Commun. 2006, 8, 179–183. [Google Scholar] [CrossRef]
- González-García, Y.; Burstein, G.T.; González, S.; Souto, R.M. Imaging metastable pits on austenitic stainless steel in situ at the open circuit corrosion potential. Electrochem. Commun. 2004, 6, 637–642. [Google Scholar] [CrossRef]
- Xu, S.; Hu, X.; Yang, Y.; Chen, Z.; Chan, Y.C. Effect of carbon nanotubes and their dispersion on electroless Ni-P under bump metallization for lead-free solder interconnection. J. Mater. Sci. Mater. Electron. 2014, 25, 2682–2691. [Google Scholar] [CrossRef]
- Xie, G.; Liu, S.; Guo, D.; Wang, Q.; Luo, J. Investigation of the running-in process and friction coefficient under the lubrication of ionic liquid/water mixture. Appl. Surf. Sci. 2009, 255, 6408–6414. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, X.Q.; Wang, M.; Wang, F.F.; Ge, H.L. Preparation and tribological properties of the carbon nanotubes-Ni-P composite coating. Tribol. Int. 2006, 39, 953–957. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Kalavati; Rajam, K.S. Surface morphology and structure of electroless ternary NiWP deposits with various W and P contents. J. Alloys Compd. 2009, 486, 468–473. [Google Scholar] [CrossRef]
- Wang, Q.; Callisti, M.; Miranda, A.; McKay, B.; Deligkiozi, I.; Milickovic, T.K.; Zoikis-Karathanasis, A.; Hrissagis, K.; Magagnin, L.; Polcar, T. Evolution of structural, mechanical and tribological properties of Ni-P/MWCNT coatings as a function of annealing temperature. Surf. Coat. Technol. 2016, 302, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Alexis, J.; Gaussens, C.; Etcheverry, B.; Bonino, J.-P. Development of nickel phosphorus coatings containing micro particles of talc phyllosilicates. Mater. Chem. Phys. 2013, 137, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, A.S.; El-Shenawy, E.; El-Bitar, T. Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl. Int. J. Electrochem. Sci. 2006, 1, 171–180. [Google Scholar]
- El-Sayed, M.S. Comparative study on the electrochemical corrosion behavior of iron and X-65 steel in 4.0 wt.% sodium chloride solution after different exposure intervals. Molecules 2014, 19, 9962–9974. [Google Scholar] [CrossRef] [Green Version]
- Serdar, M.; Zulj, L.V.; Bjegovic, D. Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment. Corros. Sci. 2013, 69, 149–157. [Google Scholar] [CrossRef]
- Praveen, B.M.; Venkatesha, T.V.; Naik, Y.A.; Prashantha, K. Corrosion studies of carbon nanotubes-Zn composite coating. Surf. Coat. Technol. 2007, 201, 5836–5842. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, H.; Shi, Y.-L.; Li, M.-K.; Huang, Y.; Li, H.-L.; Huang, Y.; Li, H.-L. The fabrication and corrosion behavior of electroless Ni-P-carbon nanotube composite coatings. Mater. Res. Bull. 2005, 40, 1001–1009. [Google Scholar] [CrossRef]
- Izquierdo, J.; Martín-Ruíz, L.; Fernández-Pérez, B.M.; Rodríguez-Raposo, R.; Santana, J.J.; Souto, R.M. Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution. J. Electroanal. Chem. 2014, 728, 148–157. [Google Scholar] [CrossRef]
C | Mn | Si | P | S | Nb | Al | Cr | V | Fe |
---|---|---|---|---|---|---|---|---|---|
0.04 | 1.75 | 0.20 | 0.02 | 0.002 | 0.065 | 0.025 | 0.11 | 0.025 | Bal. |
Sample | Width (µm) | Maximum Depth (µm) |
---|---|---|
Ni–P | 538 ± 35 | 101 |
CB-0.25 | 442 ± 27 | 47 |
CB-0.50 | 252 ± 24 | 37 |
CB-1.0 | 188 ± 3 | 32 |
Coating | Ecorr (mVAg/AgCl) | icorr (µA.cm−2) | p(%) |
---|---|---|---|
Uncoated | −778 | 20.3 | ---- |
Ni–P | −540 | 4.17 | 79.5 |
CNT-0.25 | −394 | 3.28 | 83.8 |
CNT-0.5 | −388 | 2.38 | 88.3 |
CNT-1.0 | −413 | 2.01 | 90.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, M.C.L.; Correa, O.V.; da Silva, R.M.P.; de Lima, N.B.; de Oliveira, J.T.D.; de Oliveira, L.A.; Antunes, R.A. Structural Characterization, Global and Local Electrochemical Activity of Electroless Ni–P-Multiwalled Carbon Nanotube Composite Coatings on Pipeline Steel. Metals 2021, 11, 982. https://doi.org/10.3390/met11060982
de Oliveira MCL, Correa OV, da Silva RMP, de Lima NB, de Oliveira JTD, de Oliveira LA, Antunes RA. Structural Characterization, Global and Local Electrochemical Activity of Electroless Ni–P-Multiwalled Carbon Nanotube Composite Coatings on Pipeline Steel. Metals. 2021; 11(6):982. https://doi.org/10.3390/met11060982
Chicago/Turabian Stylede Oliveira, Mara Cristina Lopes, Olandir Vercino Correa, Rejane Maria Pereira da Silva, Nelson Batista de Lima, Jefferson Thadeu Dias de Oliveira, Leandro Antônio de Oliveira, and Renato Altobelli Antunes. 2021. "Structural Characterization, Global and Local Electrochemical Activity of Electroless Ni–P-Multiwalled Carbon Nanotube Composite Coatings on Pipeline Steel" Metals 11, no. 6: 982. https://doi.org/10.3390/met11060982
APA Stylede Oliveira, M. C. L., Correa, O. V., da Silva, R. M. P., de Lima, N. B., de Oliveira, J. T. D., de Oliveira, L. A., & Antunes, R. A. (2021). Structural Characterization, Global and Local Electrochemical Activity of Electroless Ni–P-Multiwalled Carbon Nanotube Composite Coatings on Pipeline Steel. Metals, 11(6), 982. https://doi.org/10.3390/met11060982